
dwave-system Documentation
Release 1.18.0

D-Wave Systems Inc

May 12, 2023

Contents

1 Documentation 3

Python Module Index 91

Index 93

i

ii

dwave-system Documentation, Release 1.18.0

dwave-system is a basic API for easily incorporating the D-Wave system as a sampler in the D-Wave Ocean soft-
ware stack, directly or through Leap’s cloud-based hybrid solvers. It includes DWaveSampler, a dimod sam-
pler that accepts and passes system parameters such as system identification and authentication down the stack,
LeapHybridSampler, for Leap’s hybrid solvers, and other. It also includes several useful composites—layers
of pre- and post-processing—that can be used with DWaveSampler to handle minor-embedding, optimize chain
strength, etc.

Contents 1

https://docs.ocean.dwavesys.com/en/stable/overview/stack.html
https://docs.ocean.dwavesys.com/en/stable/overview/stack.html
https://cloud.dwavesys.com/leap/

dwave-system Documentation, Release 1.18.0

2 Contents

CHAPTER 1

Documentation

Note: This documentation is for the latest version of dwave-system. Documentation for the version currently installed
by dwave-ocean-sdk is here: dwave-system.

1.1 Introduction

dwave-system enables easy incorporation of the D-Wave system as a sampler in either a hybrid quantum-classical
solution, using LeapHybridSampler(), for example, or dwave-hybrid samplers such as KerberosSampler,
or directly using DWaveSampler().

Note: For applications that require detailed control on communication with the remote compute resource (a D-Wave
QPU or Leap’s hybrid solvers), see dwave-cloud-client.

D-Wave System Documentation describes D-Wave quantum computers and Leap hybrid solvers, including features,
parameters, and properties. It also provides guidance on programming the D-Wave system, including how to formulate
problems and configure parameters.

1.1.1 Example

This example solves a small example of a known graph problem, minimum vertex cover. It uses the NetworkX graphic
package to create the problem, Ocean’s dwave_networkx to formulate the graph problem as a BQM, and dwave-
system’s DWaveSampler() to use a D-Wave system as the sampler. dwave-system’s EmbeddingComposite()
handles mapping between the problem graph to the D-Wave system’s numerically indexed qubits, a mapping known
as minor-embedding.

>>> import networkx as nx
>>> import dwave_networkx as dnx

(continues on next page)

3

https://github.com/dwavesystems/dwave-system
https://github.com/dwavesystems/dwave-ocean-sdk
https://docs.ocean.dwavesys.com/en/stable/docs_system/sdk_index.html
https://docs.ocean.dwavesys.com/en/stable/docs_hybrid/sdk_index.html
https://docs.ocean.dwavesys.com/en/stable/docs_hybrid/reference/reference.html#hybrid.reference.kerberos.KerberosSampler
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html
https://docs.dwavesys.com/docs/latest/index.html
https://cloud.dwavesys.com/leap/
https://en.wikipedia.org/wiki/Vertex_cover
https://docs.ocean.dwavesys.com/en/stable/docs_dnx/sdk_index.html

dwave-system Documentation, Release 1.18.0

(continued from previous page)

>>> from dwave.system import DWaveSampler, EmbeddingComposite
...
>>> s5 = nx.star_graph(4) # a star graph where node 0 is hub to four other nodes
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> print(dnx.min_vertex_cover(s5, sampler))
[0]

1.2 Reference Documentation

1.2.1 Samplers

A sampler accepts a problem in binary quadratic model (BQM) or discrete quadratic model (DQM) format and returns
variable assignments. Samplers generally try to find minimizing values but can also sample from distributions defined
by the problem.

• DWaveSampler

• DWaveCliqueSampler

• LeapHybridSampler

• LeapHybridCQMSampler

• LeapHybridDQMSampler

These samplers are non-blocking: the returned SampleSet is constructed from a Future-like object that is resolved
on the first read of any of its properties; for example, by printing the results. Your code can query its status with the
done() method or ensure resolution with the resolve() method.

Other Ocean packages provide additional samplers; for example, dimod provides samplers for testing your code.

DWaveSampler

class DWaveSampler(failover=False, retry_interval=-1, **config)
A class for using the D-Wave system as a sampler for binary quadratic models.

You can configure your solver selection and usage by setting parameters, hierarchically, in a configuration file,
as environment variables, or explicitly as input arguments. For more information, see D-Wave Cloud Client
get_solvers(). By default, online D-Wave systems are returned ordered by highest number of qubits.

Inherits from dimod.Sampler and dimod.Structured.

Parameters

• failover (bool, optional, default=False) – Signal a failover condi-
tion if a sampling error occurs. When True, raises FailoverCondition or
RetryCondition on sampleset resolve to signal failover.

Actual failover, i.e. selection of a new solver, has to be handled by the user. A conve-
nience method trigger_failover() is available for this. Note that hardware graphs
vary between QPUs, so triggering failover results in regenerated nodelist, edgelist,
properties and parameters.

4 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-binary-quadratic-model
https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-discrete-quadratic-model
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.SampleSet.done.html#dimod.SampleSet.done
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.SampleSet.resolve.html#dimod.SampleSet.resolve
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/sdk_index.html
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.get_solvers.html#dwave.cloud.client.Client.get_solvers
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Structured
https://docs.python.org/3/library/functions.html#bool

dwave-system Documentation, Release 1.18.0

Changed in version 1.16.0: In the past, the sample() method was blocking and
failover=True caused a solver failover and sampling retry. However, this failover
implementation broke when sample() became non-blocking (asynchronous), Setting
failover=True had no effect.

• retry_interval (number, optional, default=-1) – Ignored, but kept for
backward compatibility.

Changed in version 1.16.0: Ignored since 1.16.0. See note for failover parameter above.

• **config – Keyword arguments passed to dwave.cloud.client.Client.
from_config().

Note: Prior to version 1.0.0, DWaveSampler used the base client, allowing non-QPU solvers to be selected.
To reproduce the old behavior, instantiate DWaveSampler with client='base'.

Examples

This example submits a two-variable Ising problem mapped directly to two adjacent qubits on a D-Wave system.
qubit_a is the first qubit in the QPU’s indexed list of qubits and qubit_b is one of the qubits coupled to
it. Other required parameters for communication with the system, such as its URL and an authentication token,
are implicitly set in a configuration file or as environment variables, as described in Configuring Access to D-
Wave Solvers. Given sufficient reads (here 100), the quantum computer should return the best solution, 1,−1
on qubit_a and qubit_b, respectively, as its first sample (samples are ordered from lowest energy).

>>> from dwave.system import DWaveSampler
...
>>> sampler = DWaveSampler()
...
>>> qubit_a = sampler.nodelist[0]
>>> qubit_b = next(iter(sampler.adjacency[qubit_a]))
>>> sampleset = sampler.sample_ising({qubit_a: -1, qubit_b: 1},
... {},
... num_reads=100)
>>> sampleset.first.sample[qubit_a] == 1 and sampleset.first.sample[qubit_b] == -1
True

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

Properties

For parameters and properties of D-Wave systems, see D-Wave System Documentation.

DWaveSampler.properties D-Wave solver properties as returned by a SAPI query.
DWaveSampler.parameters D-Wave solver parameters in the form of a dict, where

keys are keyword parameters accepted by a SAPI query
and values are lists of properties in properties for
each key.

DWaveSampler.nodelist List of active qubits for the D-Wave solver.
DWaveSampler.edgelist List of active couplers for the D-Wave solver.

Continued on next page

1.2. Reference Documentation 5

https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config
https://docs.ocean.dwavesys.com/en/stable/overview/sapi.html
https://docs.ocean.dwavesys.com/en/stable/overview/sapi.html
https://docs.ocean.dwavesys.com/en/stable/concepts/index.html
https://docs.dwavesys.com/docs/latest/doc_solver_ref.html

dwave-system Documentation, Release 1.18.0

Table 1 – continued from previous page
DWaveSampler.adjacency Adjacency structure formatted as a dict, where keys are

the nodes of the structured sampler and values are sets
of all adjacent nodes for each key node.

DWaveSampler.structure Structure of the structured sampler formatted as a
namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

dwave.system.samplers.DWaveSampler.properties

DWaveSampler.properties
D-Wave solver properties as returned by a SAPI query.

Solver properties are dependent on the selected D-Wave solver and subject to change; for example, new released
features may add properties. D-Wave System Documentation describes the parameters and properties supported
on the D-Wave system.

Examples

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.properties # doctest: +SKIP
{'anneal_offset_ranges': [[-0.2197463755538704, 0.03821687759418928],
[-0.2242514597680286, 0.01718456460967399],
[-0.20860153999435985, 0.05511969218508182],

Snipped above response for brevity

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

Type dict

dwave.system.samplers.DWaveSampler.parameters

DWaveSampler.parameters
D-Wave solver parameters in the form of a dict, where keys are keyword parameters accepted by a SAPI query
and values are lists of properties in properties for each key.

Solver parameters are dependent on the selected D-Wave solver and subject to change; for example, new released
features may add parameters. D-Wave System Documentation describes the parameters and properties supported
on the D-Wave system.

Examples

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.parameters # doctest: +SKIP
{'anneal_offsets': ['parameters'],
'anneal_schedule': ['parameters'],
'annealing_time': ['parameters'],
'answer_mode': ['parameters'],
'auto_scale': ['parameters'],
Snipped above response for brevity

6 Chapter 1. Documentation

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.dwavesys.com/docs/latest/doc_solver_ref.html
https://docs.ocean.dwavesys.com/en/stable/concepts/index.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.dwavesys.com/docs/latest/doc_solver_ref.html

dwave-system Documentation, Release 1.18.0

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

Type dict[str, list]

dwave.system.samplers.DWaveSampler.nodelist

DWaveSampler.nodelist
List of active qubits for the D-Wave solver.

Examples

First 5 entries of the node list for one Advantage system.

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.nodelist[:5] # doctest: +SKIP
[30, 31, 32, 33, 34]

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

Type list

dwave.system.samplers.DWaveSampler.edgelist

DWaveSampler.edgelist
List of active couplers for the D-Wave solver.

Examples

First 5 entries of the coupler list for one Advantage system.

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.edgelist[:5] # doctest: +SKIP
[(30, 31), (30, 45), (30, 2940), (30, 2955), (30, 2970)]

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

Type list

dwave.system.samplers.DWaveSampler.adjacency

DWaveSampler.adjacency
Adjacency structure formatted as a dict, where keys are the nodes of the structured sampler and values are sets
of all adjacent nodes for each key node.

dwave.system.samplers.DWaveSampler.structure

DWaveSampler.structure
Structure of the structured sampler formatted as a namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

1.2. Reference Documentation 7

https://docs.ocean.dwavesys.com/en/stable/concepts/index.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.ocean.dwavesys.com/en/stable/concepts/index.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.ocean.dwavesys.com/en/stable/concepts/index.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.html#collections.namedtuple

dwave-system Documentation, Release 1.18.0

Methods

DWaveSampler.sample(bqm[, warnings]) Sample from the specified binary quadratic model.
DWaveSampler.sample_ising(h, *args,
**kwargs)

Sample from an Ising model using the implemented
sample method.

DWaveSampler.sample_qubo(Q, Hashable], . . .) Sample from a QUBO using the implemented sample
method.

DWaveSampler.validate_anneal_schedule(. . .)Raise an exception if the specified schedule is invalid
for the sampler.

DWaveSampler.to_networkx_graph() Converts DWaveSampler’s structure to a Chimera, Pe-
gasus or Zephyr NetworkX graph.

dwave.system.samplers.DWaveSampler.sample

DWaveSampler.sample(bqm, warnings=None, **kwargs)
Sample from the specified binary quadratic model.

Parameters

• bqm (BinaryQuadraticModel) – The binary quadratic model. Must match
nodelist and edgelist.

• warnings (WarningAction, optional) – Defines what warning action to take, if any.
See Warnings. The default behaviour is to ignore warnings.

• **kwargs – Optional keyword arguments for the sampling method, specified per solver
in parameters. D-Wave System Documentation’s solver guide describes the parameters
and properties supported on the D-Wave system.

Returns Sample set constructed from a (non-blocking) Future-like object. In it this sampler also
provides timing information in the info field as described in the D-Wave System Documenta-
tion’s QPU Timing Information from SAPI.

Return type SampleSet

Examples

This example submits a two-variable Ising problem mapped directly to two adjacent qubits on a D-Wave system.
qubit_a is the first qubit in the QPU’s indexed list of qubits and qubit_b is one of the qubits coupled to
it. Given sufficient reads (here 100), the quantum computer should return the best solution, 1,−1 on qubit_a
and qubit_b, respectively, as its first sample (samples are ordered from lowest energy).

>>> from dwave.system import DWaveSampler
...
>>> sampler = DWaveSampler()
...
>>> qubit_a = sampler.nodelist[0]
>>> qubit_b = next(iter(sampler.adjacency[qubit_a]))
>>> sampleset = sampler.sample_ising({qubit_a: -1, qubit_b: 1},
... {},
... num_reads=100)
>>> sampleset.first.sample[qubit_a] == 1 and sampleset.first.sample[qubit_b] == -1
True

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

8 Chapter 1. Documentation

https://docs.dwavesys.com/docs/latest/doc_solver_ref.html
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.dwavesys.com/docs/latest/c_qpu_timing.html#qpu-sapi-qpu-timing
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet
https://docs.ocean.dwavesys.com/en/stable/concepts/index.html

dwave-system Documentation, Release 1.18.0

dwave.system.samplers.DWaveSampler.sample_ising

DWaveSampler.sample_ising(h, *args, **kwargs)
Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

dwave.system.samplers.DWaveSampler.sample_qubo

DWaveSampler.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float, numpy.floating,
numpy.integer]], **parameters)→ dimod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

dwave.system.samplers.DWaveSampler.validate_anneal_schedule

DWaveSampler.validate_anneal_schedule(anneal_schedule)
Raise an exception if the specified schedule is invalid for the sampler.

Parameters anneal_schedule (list) – An anneal schedule variation is defined by a series of
pairs of floating-point numbers identifying points in the schedule at which to change slope. The
first element in the pair is time t in microseconds; the second, normalized persistent current s in
the range [0,1]. The resulting schedule is the piecewise-linear curve that connects the provided
points.

Raises

• ValueError – If the schedule violates any of the conditions listed below.

1.2. Reference Documentation 9

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError

dwave-system Documentation, Release 1.18.0

• RuntimeError – If the sampler does not accept the anneal_schedule parameter or if it
does not have annealing_time_range or max_anneal_schedule_points properties.

As described in D-Wave System Documentation, an anneal schedule must satisfy the following conditions:

• Time t must increase for all points in the schedule.

• For forward annealing, the first point must be (0,0) and the anneal fraction s must increase monotonically.

• For reverse annealing, the anneal fraction s must start and end at s=1.

• In the final point, anneal fraction s must equal 1 and time t must not exceed the maximum value in the
annealing_time_range property.

• The number of points must be >=2.

• The upper bound is system-dependent; check the max_anneal_schedule_points property. For reverse an-
nealing, the maximum number of points allowed is one more than the number given by this property.

Examples

This example sets a quench schedule on a D-Wave system.

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> quench_schedule=[[0.0, 0.0], [12.0, 0.6], [12.8, 1.0]]
>>> DWaveSampler().validate_anneal_schedule(quench_schedule) # doctest: +SKIP
>>>

dwave.system.samplers.DWaveSampler.to_networkx_graph

DWaveSampler.to_networkx_graph()
Converts DWaveSampler’s structure to a Chimera, Pegasus or Zephyr NetworkX graph.

Returns Either a Chimera lattice of shape [m, n, t], a Pegasus lattice of shape [m] or a Zephyr lattice
of size [m,t].

Return type networkx.Graph

Examples

This example converts a selected D-Wave system solver to a graph and verifies it has over 5000 nodes.

>>> from dwave.system import DWaveSampler
...
>>> sampler = DWaveSampler()
>>> g = sampler.to_networkx_graph() # doctest: +SKIP
>>> len(g.nodes) > 5000 # doctest: +SKIP
True

DWaveCliqueSampler

class DWaveCliqueSampler(*, failover: bool = False, retry_interval: numbers.Number = -1, **con-
fig)

A sampler for solving clique binary quadratic models on the D-Wave system.

10 Chapter 1. Documentation

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.dwavesys.com/docs/latest/doc_solver_ref.html
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph

dwave-system Documentation, Release 1.18.0

This sampler wraps find_clique_embedding() to generate embeddings with even chain length. These
embeddings work well for dense binary quadratic models. For sparse models, using EmbeddingComposite
with DWaveSampler is preferred.

Configuration such as solver selection is similar to that of DWaveSampler.

Parameters

• failover (bool, optional, default=False) – Signal a failover condi-
tion if a sampling error occurs. When True, raises FailoverCondition or
RetryCondition on sampleset resolve to signal failover.

Actual failover, i.e. selection of a new solver, has to be handled by the user. A conve-
nience method trigger_failover() is available for this. Note that hardware graphs
vary between QPUs, so triggering failover results in regenerated nodelist, edgelist,
properties and parameters.

Changed in version 1.16.0: In the past, the sample() method was blocking and
failover=True caused a solver failover and sampling retry. However, this failover
implementation broke when sample() became non-blocking (asynchronous), Setting
failover=True had no effect.

• retry_interval (number, optional, default=-1) – Ignored, but kept for
backward compatibility.

Changed in version 1.16.0: Ignored since 1.16.0. See note for failover parameter above.

• **config – Keyword arguments, as accepted by DWaveSampler

Examples

This example creates a BQM based on a 6-node clique (complete graph), with random ±1 values assigned to
nodes, and submits it to a D-Wave system. Parameters for communication with the system, such as its URL
and an authentication token, are implicitly set in a configuration file or as environment variables, as described
in Configuring Access to D-Wave Solvers.

>>> from dwave.system import DWaveCliqueSampler
>>> import dimod
...
>>> bqm = dimod.generators.ran_r(1, 6)
...
>>> sampler = DWaveCliqueSampler() # doctest: +SKIP
>>> sampler.largest_clique_size > 5 # doctest: +SKIP
True
>>> sampleset = sampler.sample(bqm, num_reads=100) # doctest: +SKIP

Properties

DWaveCliqueSampler.
largest_clique_size

The maximum number of variables that can be embed-
ded.

DWaveCliqueSampler.qpu_linear_range Range of linear biases allowed by the QPU.
DWaveCliqueSampler.
qpu_quadratic_range

Range of quadratic biases allowed by the QPU.

DWaveCliqueSampler.properties Properties as a dict containing any additional informa-
tion about the sampler.

Continued on next page

1.2. Reference Documentation 11

https://docs.ocean.dwavesys.com/en/stable/docs_minorminer/source/reference/clique_embedding.html#minorminer.busclique.find_clique_embedding
https://docs.python.org/3/library/functions.html#bool
https://docs.ocean.dwavesys.com/en/stable/overview/sapi.html

dwave-system Documentation, Release 1.18.0

Table 3 – continued from previous page
DWaveCliqueSampler.parameters Parameters as a dict, where keys are keyword param-

eters accepted by the sampler methods and values are
lists of the properties relevent to each parameter.

DWaveCliqueSampler.target_graph The QPU topology.

dwave.system.samplers.DWaveCliqueSampler.largest_clique_size

DWaveCliqueSampler.largest_clique_size
The maximum number of variables that can be embedded.

dwave.system.samplers.DWaveCliqueSampler.qpu_linear_range

DWaveCliqueSampler.qpu_linear_range
Range of linear biases allowed by the QPU.

dwave.system.samplers.DWaveCliqueSampler.qpu_quadratic_range

DWaveCliqueSampler.qpu_quadratic_range
Range of quadratic biases allowed by the QPU.

dwave.system.samplers.DWaveCliqueSampler.properties

DWaveCliqueSampler.properties
Properties as a dict containing any additional information about the sampler.

dwave.system.samplers.DWaveCliqueSampler.parameters

DWaveCliqueSampler.parameters
Parameters as a dict, where keys are keyword parameters accepted by the sampler methods and values are lists
of the properties relevent to each parameter.

dwave.system.samplers.DWaveCliqueSampler.target_graph

DWaveCliqueSampler.target_graph
The QPU topology.

Methods

DWaveCliqueSampler.largest_clique() The clique embedding with the maximum number of
source variables.

DWaveCliqueSampler.sample(bqm[,
chain_strength])

Sample from the specified binary quadratic model.

DWaveCliqueSampler.sample_ising(h, . . .) Sample from an Ising model using the implemented
sample method.

Continued on next page

12 Chapter 1. Documentation

dwave-system Documentation, Release 1.18.0

Table 4 – continued from previous page
DWaveCliqueSampler.sample_qubo(Q, Hash-
able], . . .)

Sample from a QUBO using the implemented sample
method.

dwave.system.samplers.DWaveCliqueSampler.largest_clique

DWaveCliqueSampler.largest_clique()
The clique embedding with the maximum number of source variables.

Returns The clique embedding with the maximum number of source variables.

Return type dict

dwave.system.samplers.DWaveCliqueSampler.sample

DWaveCliqueSampler.sample(bqm, chain_strength=None, **kwargs)
Sample from the specified binary quadratic model.

Parameters

• bqm (BinaryQuadraticModel) – Any binary quadratic model with up to
largest_clique_size variables. This BQM is embedded using a clique embedding.

• chain_strength (float/mapping/callable, optional) – Sets the coupling
strength between qubits representing variables that form a chain. Mappings should spec-
ify the required chain strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default, chain_strength is calculated with
uniform_torque_compensation().

• **kwargs – Optional keyword arguments for the sampling method, specified per solver
in parameters. D-Wave System Documentation’s solver guide describes the parameters
and properties supported on the D-Wave system. Note that auto_scale is not supported by
this sampler, because it scales the problem as part of the embedding process.

Returns Sample set constructed from a (non-blocking) Future-like object.

Return type SampleSet

dwave.system.samplers.DWaveCliqueSampler.sample_ising

DWaveCliqueSampler.sample_ising(h: Union[Mapping[Hashable, Union[float, numpy.floating,
numpy.integer]], Sequence[Union[float, numpy.floating,
numpy.integer]]], J: Mapping[Tuple[Hashable, Hashable],
Union[float, numpy.floating, numpy.integer]], **parameters)
→ dimod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

1.2. Reference Documentation 13

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.dwavesys.com/docs/latest/doc_solver_ref.html
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

dwave.system.samplers.DWaveCliqueSampler.sample_qubo

DWaveCliqueSampler.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

LeapHybridSampler

class LeapHybridSampler(**config)
A class for using Leap’s cloud-based hybrid BQM solvers.

Leap’s quantum-classical hybrid BQM solvers are intended to solve arbitrary application problems formulated
as binary quadratic models (BQM).

You can configure your solver selection and usage by setting parameters, hierarchically, in a configuration file,
as environment variables, or explicitly as input arguments, as described in D-Wave Cloud Client.

dwave-cloud-client’s get_solvers() method filters solvers you have access to by solver properties
category=hybrid and supported_problem_type=bqm. By default, online hybrid BQM solvers are
returned ordered by latest version.

The default specification for filtering and ordering solvers by features is available as default_solver prop-
erty. Explicitly specifying a solver in a configuration file, an environment variable, or keyword arguments
overrides this specification. See the example below on how to extend it instead.

Parameters **config – Keyword arguments passed to dwave.cloud.client.Client.
from_config().

Examples

This example builds a random sparse graph and uses a hybrid solver to find a maximum independent set.

14 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html#sdk-index-cloud
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.get_solvers.html#dwave.cloud.client.Client.get_solvers
https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config

dwave-system Documentation, Release 1.18.0

>>> import dimod
>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> import numpy as np
>>> from dwave.system import LeapHybridSampler
...
>>> # Create a maximum-independent set problem from a random graph
>>> problem_node_count = 300
>>> G = nx.random_geometric_graph(problem_node_count, radius=0.0005*problem_node_
→˓count)
>>> qubo = dnx.algorithms.independent_set.maximum_weighted_independent_set_qubo(G)
>>> bqm = dimod.BQM.from_qubo(qubo)
...
>>> # Find a good solution
>>> sampler = LeapHybridSampler() # doctest: +SKIP
>>> sampleset = sampler.sample(bqm) # doctest: +SKIP

This example specializes the default solver selection by filtering out bulk BQM solvers. (Bulk solvers are
throughput-optimal for heavy/batch workloads, have a higher start-up latency, and are not well suited for live
workloads. Not all Leap accounts have access to bulk solvers.)

>>> from dwave.system import LeapHybridSampler
...
>>> solver = LeapHybridSampler.default_solver
>>> solver.update(name__regex=".*(?<!bulk)$") # name shouldn't end with
→˓"bulk"
>>> sampler = LeapHybridSampler(solver=solver) # doctest: +SKIP
>>> sampler.solver # doctest: +SKIP
BQMSolver(id='hybrid_binary_quadratic_model_version2')

Properties

LeapHybridSampler.properties Solver properties as returned by a SAPI query.
LeapHybridSampler.parameters Solver parameters in the form of a dict, where keys are

keyword parameters accepted by a SAPI query and val-
ues are lists of properties in properties for each key.

LeapHybridSampler.default_solver

dwave.system.samplers.LeapHybridSampler.properties

LeapHybridSampler.properties
Solver properties as returned by a SAPI query.

Solver properties are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridSampler.parameters

LeapHybridSampler.parameters
Solver parameters in the form of a dict, where keys are keyword parameters accepted by a SAPI query and
values are lists of properties in properties for each key.

Solver parameters are dependent on the selected solver and subject to change.

1.2. Reference Documentation 15

https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html

dwave-system Documentation, Release 1.18.0

dwave.system.samplers.LeapHybridSampler.default_solver

LeapHybridSampler.default_solver = {'order_by': '-properties.version', 'supported_problem_types__contains': 'bqm'}

Methods

LeapHybridSampler.sample(bqm[, time_limit]) Sample from the specified binary quadratic model.
LeapHybridSampler.sample_ising(h, . . .) Sample from an Ising model using the implemented

sample method.
LeapHybridSampler.sample_qubo(Q, Hash-
able], . . .)

Sample from a QUBO using the implemented sample
method.

LeapHybridSampler.min_time_limit(bqm) Return the minimum time_limit accepted for the given
problem.

dwave.system.samplers.LeapHybridSampler.sample

LeapHybridSampler.sample(bqm, time_limit=None, **kwargs)
Sample from the specified binary quadratic model.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model.

• time_limit (int) – Maximum run time, in seconds, to allow the solver to work on the
problem. Must be at least the minimum required for the number of problem variables, which
is calculated and set by default.

min_time_limit() calculates (and describes) the minimum time for your problem.

• **kwargs – Optional keyword arguments for the solver, specified in parameters.

Returns Sample set constructed from a (non-blocking) Future-like object.

Return type SampleSet

Examples

This example builds a random sparse graph and uses a hybrid solver to find a maximum independent set.

>>> import dimod
>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> import numpy as np
...
>>> # Create a maximum-independent set problem from a random graph
>>> problem_node_count = 300
>>> G = nx.random_geometric_graph(problem_node_count, radius=0.0005*problem_node_
→˓count)
>>> qubo = dnx.algorithms.independent_set.maximum_weighted_independent_set_qubo(G)
>>> bqm = dimod.BQM.from_qubo(qubo)
...
>>> # Find a good solution
>>> sampler = LeapHybridSampler() # doctest: +SKIP
>>> sampleset = sampler.sample(bqm) # doctest: +SKIP

16 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

dwave.system.samplers.LeapHybridSampler.sample_ising

LeapHybridSampler.sample_ising(h: Union[Mapping[Hashable, Union[float, numpy.floating,
numpy.integer]], Sequence[Union[float, numpy.floating,
numpy.integer]]], J: Mapping[Tuple[Hashable, Hashable],
Union[float, numpy.floating, numpy.integer]], **parameters)→
dimod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

dwave.system.samplers.LeapHybridSampler.sample_qubo

LeapHybridSampler.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

dwave.system.samplers.LeapHybridSampler.min_time_limit

LeapHybridSampler.min_time_limit(bqm)
Return the minimum time_limit accepted for the given problem.

The minimum time for a hybrid BQM solver is specified as a piecewise-linear curve defined by a set of floating-
point pairs, the minimum_time_limit field under properties. The first element in each pair is the number of
problem variables; the second is the minimum required time. The minimum time for any number of variables is
a linear interpolation calculated on two pairs that represent the relevant range for the given number of variables.

1.2. Reference Documentation 17

dwave-system Documentation, Release 1.18.0

Examples

For a solver where LeapHybridSampler().properties[“minimum_time_limit”] returns [[1, 0.1], [100, 10.0],
[1000, 20.0]], the minimum time for a problem 50 variales is 5 seconds (the linear interpolation of the first
two pairs that represent problems with between 1 to 100 variables).

LeapHybridCQMSampler

class LeapHybridCQMSampler(**config)
A class for using Leap’s cloud-based hybrid CQM solvers.

Leap’s quantum-classical hybrid CQM solvers are intended to solve application problems formulated as con-
strained quadratic models (CQM).

You can configure your solver selection and usage by setting parameters, hierarchically, in a configuration file,
as environment variables, or explicitly as input arguments, as described in D-Wave Cloud Client.

dwave-cloud-client’s get_solvers() method filters solvers you have access to by solver properties
category=hybrid and supported_problem_type=cqm. By default, online hybrid CQM solvers are
returned ordered by latest version.

Parameters **config – Keyword arguments passed to dwave.cloud.client.Client.
from_config().

Examples

This example solves a simple problem of finding the rectangle with the greatest area when the perimeter is
limited. In this example, the perimeter of the rectangle is set to 8 (meaning the largest area is for the 2𝑋2
square).

A CQM is created that will have two integer variables, 𝑖, 𝑗, each limited to half the maximum perimeter length
of 8, to represent the lengths of the rectangle’s sides:

>>> from dimod import ConstrainedQuadraticModel, Integer
>>> i = Integer('i', upper_bound=4)
>>> j = Integer('j', upper_bound=4)
>>> cqm = ConstrainedQuadraticModel()

The area of the rectangle is given by the multiplication of side 𝑖 by side 𝑗. The goal is to maximize the area,
𝑖 * 𝑗. Because D-Wave samplers minimize, the objective should have its lowest value when this goal is met.
Objective −𝑖 * 𝑗 has its minimum value when 𝑖 * 𝑗, the area, is greatest:

>>> cqm.set_objective(-i*j)

Finally, the requirement that the sum of both sides must not exceed the perimeter is represented as constraint
2𝑖+ 2𝑗 <= 8:

>>> cqm.add_constraint(2*i+2*j <= 8, "Max perimeter")
'Max perimeter'

Instantiate a hybrid CQM sampler and submit the problem for solution by a remote solver provided by the Leap
quantum cloud service:

>>> from dwave.system import LeapHybridCQMSampler # doctest: +SKIP
>>> sampler = LeapHybridCQMSampler() # doctest: +SKIP
>>> sampleset = sampler.sample_cqm(cqm) # doctest: +SKIP

(continues on next page)

18 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/concepts/cqm.html#cqm-sdk
https://docs.ocean.dwavesys.com/en/stable/concepts/cqm.html#cqm-sdk
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html#sdk-index-cloud
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.get_solvers.html#dwave.cloud.client.Client.get_solvers
https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config

dwave-system Documentation, Release 1.18.0

(continued from previous page)

>>> print(sampleset.first) # doctest: +SKIP
Sample(sample={'i': 2.0, 'j': 2.0}, energy=-4.0, num_occurrences=1,
... is_feasible=True, is_satisfied=array([True]))

The best (lowest-energy) solution found has 𝑖 = 𝑗 = 2 as expected, a solution that is feasible because all the
constraints (one in this example) are satisfied.

Properties

LeapHybridCQMSampler.properties Solver properties as returned by a SAPI query.
LeapHybridCQMSampler.parameters Solver parameters in the form of a dict, where keys are

keyword parameters accepted by a SAPI query and val-
ues are lists of properties in properties for each key.

dwave.system.samplers.LeapHybridCQMSampler.properties

LeapHybridCQMSampler.properties
Solver properties as returned by a SAPI query.

Solver properties are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridCQMSampler.parameters

LeapHybridCQMSampler.parameters
Solver parameters in the form of a dict, where keys are keyword parameters accepted by a SAPI query and
values are lists of properties in properties for each key.

Solver parameters are dependent on the selected solver and subject to change.

Methods

LeapHybridCQMSampler.sample_cqm(cqm,
. . .)

Sample from the specified constrained quadratic model.

LeapHybridCQMSampler.
min_time_limit(cqm)

Return the minimum time_limit accepted for the given
problem.

dwave.system.samplers.LeapHybridCQMSampler.sample_cqm

LeapHybridCQMSampler.sample_cqm(cqm: dimod.constrained.constrained.ConstrainedQuadraticModel,
time_limit: Optional[float] = None, **kwargs)

Sample from the specified constrained quadratic model.

Parameters

• cqm (dimod.ConstrainedQuadraticModel) – Constrained quadratic model
(CQM).

• time_limit (int, optional) – Maximum run time, in seconds, to allow the solver
to work on the problem. Must be at least the minimum required for the problem, which is
calculated and set by default.

1.2. Reference Documentation 19

https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/models.html#dimod.ConstrainedQuadraticModel
https://docs.python.org/3/library/functions.html#int

dwave-system Documentation, Release 1.18.0

min_time_limit() calculates (and describes) the minimum time for your problem.

• **kwargs – Optional keyword arguments for the solver, specified in parameters.

Returns Sample set constructed from a (non-blocking) Future-like object.

Return type SampleSet

Examples

See the example in LeapHybridCQMSampler.

dwave.system.samplers.LeapHybridCQMSampler.min_time_limit

LeapHybridCQMSampler.min_time_limit(cqm: dimod.constrained.constrained.ConstrainedQuadraticModel)
→ float

Return the minimum time_limit accepted for the given problem.

LeapHybridDQMSampler

class LeapHybridDQMSampler(**config)
A class for using Leap’s cloud-based hybrid DQM solvers.

Leap’s quantum-classical hybrid DQM solvers are intended to solve arbitrary application problems formulated
as discrete quadratic models (DQM).

You can configure your solver selection and usage by setting parameters, hierarchically, in a configuration file,
as environment variables, or explicitly as input arguments, as described in D-Wave Cloud Client.

dwave-cloud-client’s get_solvers() method filters solvers you have access to by solver properties
category=hybrid and supported_problem_type=dqm. By default, online hybrid DQM solvers are
returned ordered by latest version.

The default specification for filtering and ordering solvers by features is available as default_solver prop-
erty. Explicitly specifying a solver in a configuration file, an environment variable, or keyword arguments
overrides this specification. See the example in LeapHybridSampler on how to extend it instead.

Parameters **config – Keyword arguments passed to dwave.cloud.client.Client.
from_config().

Examples

This example solves a small, illustrative problem: a game of rock-paper-scissors. The DQM has two variables
representing two hands, with cases for rock, paper, scissors. Quadratic biases are set to produce a lower value of
the DQM for cases of variable my_hand interacting with cases of variable their_hand such that the former
wins over the latter; for example, the interaction of rock-scissors is set to -1 while scissors-rock is
set to +1.

>>> import dimod
>>> from dwave.system import LeapHybridDQMSampler
...
>>> cases = ["rock", "paper", "scissors"]
>>> win = {"rock": "scissors", "paper": "rock", "scissors": "paper"}
...
>>> dqm = dimod.DiscreteQuadraticModel()

(continues on next page)

20 Chapter 1. Documentation

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html#sdk-index-cloud
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.get_solvers.html#dwave.cloud.client.Client.get_solvers
https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config
https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config

dwave-system Documentation, Release 1.18.0

(continued from previous page)

>>> dqm.add_variable(3, label='my_hand')
'my_hand'
>>> dqm.add_variable(3, label='their_hand')
'their_hand'
>>> for my_idx, my_case in enumerate(cases):
... for their_idx, their_case in enumerate(cases):
... if win[my_case] == their_case:
... dqm.set_quadratic('my_hand', 'their_hand',
... {(my_idx, their_idx): -1})
... if win[their_case] == my_case:
... dqm.set_quadratic('my_hand', 'their_hand',
... {(my_idx, their_idx): 1})
...
>>> dqm_sampler = LeapHybridDQMSampler() # doctest: +SKIP
...
>>> sampleset = dqm_sampler.sample_dqm(dqm) # doctest: +SKIP
>>> print("{} beats {}".format(cases[sampleset.first.sample['my_hand']],
... cases[sampleset.first.sample['their_hand']])) #
→˓doctest: +SKIP
rock beats scissors

Properties

LeapHybridDQMSampler.properties Solver properties as returned by a SAPI query.
LeapHybridDQMSampler.parameters Solver parameters in the form of a dict, where keys are

keyword parameters accepted by a SAPI query and val-
ues are lists of properties in properties for each key.

LeapHybridDQMSampler.default_solver

dwave.system.samplers.LeapHybridDQMSampler.properties

LeapHybridDQMSampler.properties
Solver properties as returned by a SAPI query.

Solver properties are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridDQMSampler.parameters

LeapHybridDQMSampler.parameters
Solver parameters in the form of a dict, where keys are keyword parameters accepted by a SAPI query and
values are lists of properties in properties for each key.

Solver parameters are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridDQMSampler.default_solver

LeapHybridDQMSampler.default_solver = {'order_by': '-properties.version', 'supported_problem_types__contains': 'dqm'}

1.2. Reference Documentation 21

https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html

dwave-system Documentation, Release 1.18.0

Methods

LeapHybridDQMSampler.sample_dqm(dqm[,
. . .])

Sample from the specified discrete quadratic model.

LeapHybridDQMSampler.
min_time_limit(dqm)

Return the minimum time_limit accepted for the given
problem.

dwave.system.samplers.LeapHybridDQMSampler.sample_dqm

LeapHybridDQMSampler.sample_dqm(dqm, time_limit=None, compress=False, compressed=None,
**kwargs)

Sample from the specified discrete quadratic model.

Parameters

• dqm (dimod.DiscreteQuadraticModel) – Discrete quadratic model (DQM).

Note that if dqm is a dimod.CaseLabelDQM, then map_sample()will need to be used
to restore the case labels in the returned sample set.

• time_limit (int, optional) – Maximum run time, in seconds, to allow the solver
to work on the problem. Must be at least the minimum required for the number of problem
variables, which is calculated and set by default.

min_time_limit() calculates (and describes) the minimum time for your problem.

• compress (binary, optional) – Compresses the DQM data when set to True. Use if
your problem somewhat exceeds the maximum allowed size. Compression tends to be slow
and more effective on homogenous data, which in this case means it is more likely to help on
DQMs with many identical integer-valued biases than ones with random float-valued biases,
for example.

• compressed (binary, optional) – Deprecated; please use compress instead.

• **kwargs – Optional keyword arguments for the solver, specified in parameters.

Returns Sample set constructed from a (non-blocking) Future-like object.

Return type SampleSet

Examples

See the example in LeapHybridDQMSampler.

dwave.system.samplers.LeapHybridDQMSampler.min_time_limit

LeapHybridDQMSampler.min_time_limit(dqm)
Return the minimum time_limit accepted for the given problem.

The minimum time for a hybrid DQM solver is specified as a piecewise-linear curve defined by a set of floating-
point pairs, the minimum_time_limit field under properties. The first element in each pair is a combination
of the numbers of interactions, variables, and cases that reflects the “density” of connectivity between the prob-
lem’s variables; the second is the minimum required time. The minimum time for any particular problem size is
a linear interpolation calculated on two pairs that represent the relevant range for the given problem.

22 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/models.html#dimod.DiscreteQuadraticModel
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/models.html#dimod.CaseLabelDQM
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.CaseLabelDQM.map_sample.html#dimod.CaseLabelDQM.map_sample
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

Examples

For a solver where LeapHybridDQMSampler().properties[“minimum_time_limit”] returns [[1, 0.1], [100,
10.0], [1000, 20.0]], the minimum time for a problem of “density” 50 is 5 seconds (the linear interpolation
of the first two pairs that represent problems with “density” between 1 to 100).

1.2.2 Composites

dimod composites that provide layers of pre- and post-processing (e.g., minor-embedding) when using the D-Wave
system:

• CutOffs

– CutOffComposite

– PolyCutOffComposite

• Embedding

– AutoEmbeddingComposite

– EmbeddingComposite

– FixedEmbeddingComposite

– LazyFixedEmbeddingComposite

– TilingComposite

– VirtualGraphComposite

• Reverse Anneal

– ReverseBatchStatesComposite

– ReverseAdvanceComposite

Other Ocean packages provide additional composites; for example, dimod provides composites that operate on the
problem (e.g., scaling values), track inputs and outputs for debugging, and other useful functionality relevant to generic
samplers.

CutOffs

Prunes the binary quadratic model (BQM) submitted to the child sampler by retaining only interactions with values
commensurate with the sampler’s precision.

CutOffComposite

class CutOffComposite(child_sampler, cutoff, cutoff_vartype=<Vartype.SPIN: frozenset({1, -1})>,
comparison=<built-in function lt>)

Composite to remove interactions below a specified cutoff value.

Prunes the binary quadratic model (BQM) submitted to the child sampler by retaining only interactions with
values commensurate with the sampler’s precision as specified by the cutoff argument. Also removes vari-
ables isolated post- or pre-removal of these interactions from the BQM passed on to the child sampler, setting
these variables to values that minimize the original BQM’s energy for the returned samples.

1.2. Reference Documentation 23

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/intro/intro_samplers.html
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/sdk_index.html

dwave-system Documentation, Release 1.18.0

Parameters

• sampler (dimod.Sampler) – A dimod sampler.

• cutoff (number) – Lower bound for absolute value of interactions. Interactions with
absolute values lower than cutoff are removed. Isolated variables are also not passed on
to the child sampler.

• cutoff_vartype (Vartype/str/set, default=’SPIN’) – Variable space to execute the
removal in. Accepted input values:

– Vartype.SPIN, 'SPIN', {-1, 1}

– Vartype.BINARY, 'BINARY', {0, 1}

• comparison (function, optional) – A comparison operator for comparing inter-
action values to the cutoff value. Defaults to operator.lt().

Examples

This example removes one interaction, 'ac': -0.7, before embedding on a D-Wave system. Note that the
lowest-energy sample for the embedded problem is unchanged {'a': 1, 'b': -1, 'c': -1} and
this solution is found. However, the sample is attributed the energy appropriate to the bqm without thresholding.

>>> import dimod
>>> sampler = DWaveSampler(solver={'qpu': True})
>>> bqm = dimod.BinaryQuadraticModel({'a': -1, 'b': 1, 'c': 1},
... {'ab': 0.8, 'ac': 0.7, 'bc': -1},
... 0,
... dimod.SPIN)
>>> CutOffComposite(AutoEmbeddingComposite(sampler), 0.75).sample(bqm,
... num_reads=1000).first.energy
-5.5

Properties

CutOffComposite.child The child sampler.
CutOffComposite.children List of child samplers that that are used by this compos-

ite.
CutOffComposite.parameters A dict where keys are the keyword parameters accepted

by the sampler methods and values are lists of the prop-
erties relevent to each parameter.

CutOffComposite.properties A dict containing any additional information about the
sampler.

dwave.system.composites.CutOffComposite.child

CutOffComposite.child
The child sampler. First sampler in Composite.children.

Type Sampler

24 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler
https://docs.python.org/3/library/operator.html#operator.lt

dwave-system Documentation, Release 1.18.0

dwave.system.composites.CutOffComposite.children

CutOffComposite.children
List of child samplers that that are used by this composite.

dwave.system.composites.CutOffComposite.parameters

CutOffComposite.parameters
A dict where keys are the keyword parameters accepted by the sampler methods and values are lists of the
properties relevent to each parameter.

dwave.system.composites.CutOffComposite.properties

CutOffComposite.properties
A dict containing any additional information about the sampler.

Methods

CutOffComposite.sample(bqm, **parameters) Cut off interactions and sample from the provided bi-
nary quadratic model.

CutOffComposite.sample_ising(h,
Union[float, . . .)

Sample from an Ising model using the implemented
sample method.

CutOffComposite.sample_qubo(Q, Hashable],
. . .)

Sample from a QUBO using the implemented sample
method.

dwave.system.composites.CutOffComposite.sample

CutOffComposite.sample(bqm, **parameters)
Cut off interactions and sample from the provided binary quadratic model.

Prunes the binary quadratic model (BQM) submitted to the child sampler by retaining only interactions with
value commensurate with the sampler’s precision as specified by the cutoff argument. Also removes variables
isolated post- or pre-removal of these interactions from the BQM passed on to the child sampler, setting these
variables to values that minimize the original BQM’s energy for the returned samples.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.SampleSet

Examples

See the example in CutOffComposite.

1.2. Reference Documentation 25

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

dwave.system.composites.CutOffComposite.sample_ising

CutOffComposite.sample_ising(h: Union[Mapping[Hashable, Union[float, numpy.floating,
numpy.integer]], Sequence[Union[float, numpy.floating,
numpy.integer]]], J: Mapping[Tuple[Hashable, Hashable],
Union[float, numpy.floating, numpy.integer]], **parameters) →
dimod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

dwave.system.composites.CutOffComposite.sample_qubo

CutOffComposite.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

PolyCutOffComposite

Prunes the polynomial submitted to the child sampler by retaining only interactions with values commensurate with
the sampler’s precision.

class PolyCutOffComposite(child_sampler, cutoff, cutoff_vartype=<Vartype.SPIN: frozenset({1, -
1})>, comparison=<built-in function lt>)

Composite to remove polynomial interactions below a specified cutoff value.

Prunes the binary polynomial submitted to the child sampler by retaining only interactions with values commen-
surate with the sampler’s precision as specified by the cutoff argument. Also removes variables isolated post-

26 Chapter 1. Documentation

dwave-system Documentation, Release 1.18.0

or pre-removal of these interactions from the polynomial passed on to the child sampler, setting these variables
to values that minimize the original polynomial’s energy for the returned samples.

Parameters

• sampler (dimod.PolySampler) – A dimod binary polynomial sampler.

• cutoff (number) – Lower bound for absolute value of interactions. Interactions with
absolute values lower than cutoff are removed. Isolated variables are also not passed on
to the child sampler.

• cutoff_vartype (Vartype/str/set, default=’SPIN’) – Variable space to do the cutoff
in. Accepted input values:

– Vartype.SPIN, 'SPIN', {-1, 1}

– Vartype.BINARY, 'BINARY', {0, 1}

• comparison (function, optional) – A comparison operator for comparing the
interaction value to the cutoff value. Defaults to operator.lt().

Examples

This example removes one interaction, 'ac': 0.2, before submitting the polynomial to child sampler
ExactSolver.

>>> import dimod
>>> sampler = dimod.HigherOrderComposite(dimod.ExactSolver())
>>> poly = dimod.BinaryPolynomial({'a': 3, 'abc':-4, 'ac': 0.2}, dimod.SPIN)
>>> PolyCutOffComposite(sampler, 1).sample_poly(poly).first.sample['a']
-1

Properties

PolyCutOffComposite.child The child sampler.
PolyCutOffComposite.children List of child samplers that that are used by this compos-

ite.
PolyCutOffComposite.parameters A dict where keys are the keyword parameters accepted

by the sampler methods and values are lists of the prop-
erties relevent to each parameter.

PolyCutOffComposite.properties A dict containing any additional information about the
sampler.

dwave.system.composites.PolyCutOffComposite.child

PolyCutOffComposite.child
The child sampler. First sampler in Composite.children.

Type Sampler

dwave.system.composites.PolyCutOffComposite.children

PolyCutOffComposite.children
List of child samplers that that are used by this composite.

1.2. Reference Documentation 27

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.PolySampler
https://docs.python.org/3/library/operator.html#operator.lt
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/samplers.html#dimod.reference.samplers.ExactSolver

dwave-system Documentation, Release 1.18.0

dwave.system.composites.PolyCutOffComposite.parameters

PolyCutOffComposite.parameters
A dict where keys are the keyword parameters accepted by the sampler methods and values are lists of the
properties relevent to each parameter.

dwave.system.composites.PolyCutOffComposite.properties

PolyCutOffComposite.properties
A dict containing any additional information about the sampler.

Methods

PolyCutOffComposite.sample_poly(poly,
**kwargs)

Cutoff and sample from the provided binary polyno-
mial.

PolyCutOffComposite.sample_hising(h,
. . .)

Sample from a higher-order Ising model.

PolyCutOffComposite.sample_hubo(H, . . .) Sample from a higher-order unconstrained binary opti-
mization problem.

dwave.system.composites.PolyCutOffComposite.sample_poly

PolyCutOffComposite.sample_poly(poly, **kwargs)
Cutoff and sample from the provided binary polynomial.

Prunes the binary polynomial submitted to the child sampler by retaining only interactions with values commen-
surate with the sampler’s precision as specified by the cutoff argument. Also removes variables isolated post-
or pre-removal of these interactions from the polynomial passed on to the child sampler, setting these variables
to values that minimize the original polynomial’s energy for the returned samples.

Parameters

• poly (dimod.BinaryPolynomial) – Binary polynomial to be sampled from.

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.SampleSet

Examples

See the example in PolyCutOffComposite.

dwave.system.composites.PolyCutOffComposite.sample_hising

PolyCutOffComposite.sample_hising(h: Mapping[Hashable, Union[float, numpy.floating,
numpy.integer]], J: Mapping[Tuple[Hashable, Hashable],
Union[float, numpy.floating, numpy.integer]], **kwargs)
→ dimod.sampleset.SampleSet

Sample from a higher-order Ising model.

Converts the given higher-order Ising model to a BinaryPolynomial and calls sample_poly().

28 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

Parameters

• h – Variable biases of the Ising problem.

• J – Interaction biases of the Ising problem.

• **kwargs – See sample_poly() for additional keyword definitions.

Returns Samples from the higher-order Ising model.

See also:

sample_poly(), sample_hubo()

dwave.system.composites.PolyCutOffComposite.sample_hubo

PolyCutOffComposite.sample_hubo(H: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **kwargs) → di-
mod.sampleset.SampleSet

Sample from a higher-order unconstrained binary optimization problem.

Converts the given higher-order unconstrained binary optimization problem to a BinaryPolynomial and
then calls sample_poly().

Parameters

• H – Coefficients of the HUBO.

• **kwargs – See sample_poly() for additional keyword definitions.

Returns Samples from a higher-order unconstrained binary optimization problem.

See also:

sample_poly(), sample_hising()

Embedding

Minor-embed a problem BQM into a D-Wave system.

Embedding composites for various types of problems and application. For example:

• EmbeddingComposite for a problem with arbitrary structure that likely requires hueristic embedding.

• AutoEmbeddingComposite can save unnecessary embedding for problems that might have a structure
similar to the child sampler.

• LazyFixedEmbeddingComposite can benefit applications that resubmit a BQM with changes in some
values.

AutoEmbeddingComposite

class AutoEmbeddingComposite(child_sampler, **kwargs)
Maps problems to a structured sampler, embedding if needed.

This composite first tries to submit the binary quadratic model directly to the child sampler and only embeds if
a dimod.exceptions.BinaryQuadraticModelStructureError is raised.

Parameters

1.2. Reference Documentation 29

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/exceptions.html#dimod.exceptions.BinaryQuadraticModelStructureError

dwave-system Documentation, Release 1.18.0

• child_sampler (dimod.Sampler) – Structured dimod sampler, such as a
DWaveSampler().

• find_embedding (function, optional) – A function find_embedding(S, T,
**kwargs) where S and T are edgelists. The function can accept additional keyword ar-
guments. Defaults to minorminer.find_embedding().

• kwargs – See the EmbeddingComposite class for additional keyword arguments.

Properties

AutoEmbeddingComposite.child The child sampler.
AutoEmbeddingComposite.parameters
AutoEmbeddingComposite.properties

dwave.system.composites.AutoEmbeddingComposite.child

AutoEmbeddingComposite.child
The child sampler. First sampler in Composite.children.

Type Sampler

dwave.system.composites.AutoEmbeddingComposite.parameters

AutoEmbeddingComposite.parameters = None

dwave.system.composites.AutoEmbeddingComposite.properties

AutoEmbeddingComposite.properties = None

Methods

AutoEmbeddingComposite.sample(bqm,
**parameters)

Sample from the provided binary quadratic model.

AutoEmbeddingComposite.sample_ising(h,
. . .)

Sample from an Ising model using the implemented
sample method.

AutoEmbeddingComposite.sample_qubo(Q,
. . .)

Sample from a QUBO using the implemented sample
method.

dwave.system.composites.AutoEmbeddingComposite.sample

AutoEmbeddingComposite.sample(bqm, **parameters)
Sample from the provided binary quadratic model.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• chain_strength (float/mapping/callable, optional) – Sets the coupling
strength between qubits representing variables that form a chain. Mappings should spec-

30 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler

dwave-system Documentation, Release 1.18.0

ify the required chain strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default, chain_strength is calculated with
uniform_torque_compensation().

• chain_break_method (function/list, optional) – Method or methods used
to resolve chain breaks. If multiple methods are given, the results are concatenated
and a new field called “chain_break_method” specifying the index of the method is ap-
pended to the sample set. See unembed_sampleset() and dwave.embedding.
chain_breaks.

• chain_break_fraction (bool, optional, default=True) – Add a
chain_break_fraction field to the unembedded response with the fraction of chains broken
before unembedding.

• embedding_parameters (dict, optional) – If provided, parameters are passed
to the embedding method as keyword arguments. Overrides any embedding_parameters
passed to the constructor.

• return_embedding (bool, optional) – If True, the embedding, chain
strength, chain break method and embedding parameters are added to dimod.
SampleSet.info of the returned sample set. The default behaviour is defined by
return_embedding_default, which itself defaults to False.

• warnings (WarningAction, optional) – Defines what warning action to take, if any.
See warnings. The default behaviour is defined by warnings_default, which itself
defaults to IGNORE

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.SampleSet

Examples

See the example in EmbeddingComposite.

dwave.system.composites.AutoEmbeddingComposite.sample_ising

AutoEmbeddingComposite.sample_ising(h: Union[Mapping[Hashable, Union[float,
numpy.floating, numpy.integer]], Sequence[Union[float,
numpy.floating, numpy.integer]]], J: Map-
ping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) →
dimod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

1.2. Reference Documentation 31

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

sample(), sample_qubo()

dwave.system.composites.AutoEmbeddingComposite.sample_qubo

AutoEmbeddingComposite.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

EmbeddingComposite

class EmbeddingComposite(child_sampler, find_embedding=<function find_embedding>,
embedding_parameters=None, scale_aware=False,
child_structure_search=<function child_structure_dfs>)

Maps problems to a structured sampler.

Automatically minor-embeds a problem into a structured sampler such as a D-Wave system. A new minor-
embedding is calculated each time one of its sampling methods is called.

Parameters

• child_sampler (dimod.Sampler) – A dimod sampler, such as a DWaveSampler,
that accepts only binary quadratic models of a particular structure.

• find_embedding (function, optional) – A function find_embedding(S, T,
**kwargs) where S and T are edgelists. The function can accept additional keyword ar-
guments. Defaults to minorminer.find_embedding().

• embedding_parameters (dict, optional) – If provided, parameters are passed
to the embedding method as keyword arguments.

• scale_aware (bool, optional, default=False) – Pass chain interactions to
child samplers that accept an ignored_interactions parameter.

• child_structure_search (function, optional) – A function
child_structure_search(sampler) that accepts a sampler and returns the dimod.
Structured.structure. Defaults to dimod.child_structure_dfs().

Examples

32 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

dwave-system Documentation, Release 1.18.0

>>> from dwave.system import DWaveSampler, EmbeddingComposite
...
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> h = {'a': -1., 'b': 2}
>>> J = {('a', 'b'): 1.5}
>>> sampleset = sampler.sample_ising(h, J, num_reads=100)
>>> sampleset.first.energy
-4.5

Properties

EmbeddingComposite.child The child sampler.
EmbeddingComposite.parameters Parameters in the form of a dict.
EmbeddingComposite.properties Properties in the form of a dict.
EmbeddingComposite.
return_embedding_default

Defines the default behaviour for sample()’s re-
turn_embedding kwarg.

EmbeddingComposite.warnings_default Defines the default behavior for sample()’s warnings
kwarg.

dwave.system.composites.EmbeddingComposite.child

EmbeddingComposite.child
The child sampler. First sampler in Composite.children.

Type Sampler

dwave.system.composites.EmbeddingComposite.parameters

EmbeddingComposite.parameters = None
Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters accepted by the child sampler and
parameters added by the composite.

Type dict[str, list]

dwave.system.composites.EmbeddingComposite.properties

EmbeddingComposite.properties = None
Properties in the form of a dict.

Contains the properties of the child sampler.

Type dict

dwave.system.composites.EmbeddingComposite.return_embedding_default

EmbeddingComposite.return_embedding_default = False
Defines the default behaviour for sample()’s return_embedding kwarg.

1.2. Reference Documentation 33

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 1.18.0

dwave.system.composites.EmbeddingComposite.warnings_default

EmbeddingComposite.warnings_default = 'ignore'
Defines the default behavior for sample()’s warnings kwarg.

Methods

EmbeddingComposite.sample(bqm[, . . .]) Sample from the provided binary quadratic model.
EmbeddingComposite.sample_ising(h, . . .) Sample from an Ising model using the implemented

sample method.
EmbeddingComposite.sample_qubo(Q, Hash-
able], . . .)

Sample from a QUBO using the implemented sample
method.

dwave.system.composites.EmbeddingComposite.sample

EmbeddingComposite.sample(bqm, chain_strength=None, chain_break_method=None,
chain_break_fraction=True, embedding_parameters=None, re-
turn_embedding=None, warnings=None, **parameters)

Sample from the provided binary quadratic model.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• chain_strength (float/mapping/callable, optional) – Sets the coupling
strength between qubits representing variables that form a chain. Mappings should spec-
ify the required chain strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default, chain_strength is calculated with
uniform_torque_compensation().

• chain_break_method (function/list, optional) – Method or methods used
to resolve chain breaks. If multiple methods are given, the results are concatenated
and a new field called “chain_break_method” specifying the index of the method is ap-
pended to the sample set. See unembed_sampleset() and dwave.embedding.
chain_breaks.

• chain_break_fraction (bool, optional, default=True) – Add a
chain_break_fraction field to the unembedded response with the fraction of chains broken
before unembedding.

• embedding_parameters (dict, optional) – If provided, parameters are passed
to the embedding method as keyword arguments. Overrides any embedding_parameters
passed to the constructor.

• return_embedding (bool, optional) – If True, the embedding, chain
strength, chain break method and embedding parameters are added to dimod.
SampleSet.info of the returned sample set. The default behaviour is defined by
return_embedding_default, which itself defaults to False.

• warnings (WarningAction, optional) – Defines what warning action to take, if any.
See warnings. The default behaviour is defined by warnings_default, which itself
defaults to IGNORE

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.SampleSet

34 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

Examples

See the example in EmbeddingComposite.

dwave.system.composites.EmbeddingComposite.sample_ising

EmbeddingComposite.sample_ising(h: Union[Mapping[Hashable, Union[float, numpy.floating,
numpy.integer]], Sequence[Union[float, numpy.floating,
numpy.integer]]], J: Mapping[Tuple[Hashable, Hashable],
Union[float, numpy.floating, numpy.integer]], **parameters)
→ dimod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

dwave.system.composites.EmbeddingComposite.sample_qubo

EmbeddingComposite.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

FixedEmbeddingComposite

class FixedEmbeddingComposite(child_sampler, embedding=None, source_adjacency=None,
**kwargs)

Maps problems to a structured sampler with the specified minor-embedding.

1.2. Reference Documentation 35

dwave-system Documentation, Release 1.18.0

Parameters

• child_sampler (dimod.Sampler) – Structured dimod sampler such as a D-Wave
system.

• embedding (dict[hashable, iterable], optional) – Mapping from a
source graph to the specified sampler’s graph (the target graph).

• source_adjacency (dict[hashable, iterable]) – Deprecated. Dictionary to
describe source graph as {node: {node neighbours}}.

• kwargs – See the EmbeddingComposite class for additional keyword arguments.
Note that find_embedding and embedding_parameters keyword arguments are
ignored.

Examples

To embed a triangular problem (a problem with a three-node complete graph, or clique) in the Chimera topology,
you need to chain two qubits. This example maps triangular problems to a composed sampler (based on the
unstructured ExactSolver) with a Chimera unit-cell structure.

>>> import dimod
>>> import dwave_networkx as dnx
>>> from dwave.system import FixedEmbeddingComposite
...
>>> c1 = dnx.chimera_graph(1)
>>> embedding = {'a': [0, 4], 'b': [1], 'c': [5]}
>>> structured_sampler = dimod.StructureComposite(dimod.ExactSolver(),
... c1.nodes, c1.edges)
>>> sampler = FixedEmbeddingComposite(structured_sampler, embedding)
>>> sampler.edgelist
[('a', 'b'), ('a', 'c'), ('b', 'c')]

Properties

FixedEmbeddingComposite.adjacency Adjacency structure for the composed sampler.
FixedEmbeddingComposite.child The child sampler.
FixedEmbeddingComposite.children
FixedEmbeddingComposite.edgelist Edges available to the composed sampler.
FixedEmbeddingComposite.nodelist Nodes available to the composed sampler.
FixedEmbeddingComposite.parameters
FixedEmbeddingComposite.properties
FixedEmbeddingComposite.structure Structure of the structured sampler formatted as a

namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

dwave.system.composites.FixedEmbeddingComposite.adjacency

FixedEmbeddingComposite.adjacency
Adjacency structure for the composed sampler.

Type dict[variable, set]

36 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/samplers.html#dimod.reference.samplers.ExactSolver
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set

dwave-system Documentation, Release 1.18.0

dwave.system.composites.FixedEmbeddingComposite.child

FixedEmbeddingComposite.child
The child sampler. First sampler in Composite.children.

Type Sampler

dwave.system.composites.FixedEmbeddingComposite.children

FixedEmbeddingComposite.children = None

dwave.system.composites.FixedEmbeddingComposite.edgelist

FixedEmbeddingComposite.edgelist
Edges available to the composed sampler.

Type list

dwave.system.composites.FixedEmbeddingComposite.nodelist

FixedEmbeddingComposite.nodelist
Nodes available to the composed sampler.

Type list

dwave.system.composites.FixedEmbeddingComposite.parameters

FixedEmbeddingComposite.parameters = None

dwave.system.composites.FixedEmbeddingComposite.properties

FixedEmbeddingComposite.properties = None

dwave.system.composites.FixedEmbeddingComposite.structure

FixedEmbeddingComposite.structure
Structure of the structured sampler formatted as a namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

Methods

FixedEmbeddingComposite.sample(bqm,
**parameters)

Sample the binary quadratic model.

FixedEmbeddingComposite.
sample_ising(h, . . .)

Sample from an Ising model using the implemented
sample method.

FixedEmbeddingComposite.
sample_qubo(Q, . . .)

Sample from a QUBO using the implemented sample
method.

1.2. Reference Documentation 37

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.html#collections.namedtuple

dwave-system Documentation, Release 1.18.0

dwave.system.composites.FixedEmbeddingComposite.sample

FixedEmbeddingComposite.sample(bqm, **parameters)
Sample the binary quadratic model.

On the first call of a sampling method, finds a minor-embedding for the given binary quadratic model (BQM).
All subsequent calls to its sampling methods reuse this embedding.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• chain_strength (float/mapping/callable, optional) – Sets the coupling
strength between qubits representing variables that form a chain. Mappings should spec-
ify the required chain strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default, chain_strength is calculated with
uniform_torque_compensation().

• chain_break_method (function, optional) – Method used to resolve chain
breaks during sample unembedding. See unembed_sampleset().

• chain_break_fraction (bool, optional, default=True) – Add a
‘chain_break_fraction’ field to the unembedded response with the fraction of chains broken
before unembedding.

• embedding_parameters (dict, optional) – If provided, parameters are passed
to the embedding method as keyword arguments. Overrides any embedding_parameters
passed to the constructor. Only used on the first call.

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.SampleSet

dwave.system.composites.FixedEmbeddingComposite.sample_ising

FixedEmbeddingComposite.sample_ising(h: Union[Mapping[Hashable, Union[float,
numpy.floating, numpy.integer]], Se-
quence[Union[float, numpy.floating, numpy.integer]]],
J: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) →
dimod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

38 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

dwave.system.composites.FixedEmbeddingComposite.sample_qubo

FixedEmbeddingComposite.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

LazyFixedEmbeddingComposite

class LazyFixedEmbeddingComposite(child_sampler, find_embedding=<function
find_embedding>, embedding_parameters=None,
scale_aware=False, child_structure_search=<function
child_structure_dfs>)

Maps problems to the structure of its first given problem.

This composite reuses the minor-embedding found for its first given problem without recalculating a new minor-
embedding for subsequent calls of its sampling methods.

Parameters

• child_sampler (dimod.Sampler) – Structured dimod sampler.

• find_embedding (function, default=:func:minorminer.find_embedding) – A function
find_embedding(S, T, **kwargs) where S and T are edgelists. The function can accept addi-
tional keyword arguments. The function is used to find the embedding for the first problem
solved.

• embedding_parameters (dict, optional) – If provided, parameters are passed
to the embedding method as keyword arguments.

Examples

>>> from dwave.system import LazyFixedEmbeddingComposite, DWaveSampler
...
>>> sampler = LazyFixedEmbeddingComposite(DWaveSampler())
>>> sampler.nodelist is None # no structure prior to first sampling
True
>>> __ = sampler.sample_ising({}, {('a', 'b'): -1})
>>> sampler.nodelist # has structure based on given problem
['a', 'b']

1.2. Reference Documentation 39

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 1.18.0

Properties

LazyFixedEmbeddingComposite.
adjacency

Adjacency structure for the composed sampler.

LazyFixedEmbeddingComposite.edgelist Edges available to the composed sampler.
LazyFixedEmbeddingComposite.nodelist Nodes available to the composed sampler.
LazyFixedEmbeddingComposite.
parameters
LazyFixedEmbeddingComposite.
properties
LazyFixedEmbeddingComposite.structure Structure of the structured sampler formatted as a

namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

dwave.system.composites.LazyFixedEmbeddingComposite.adjacency

LazyFixedEmbeddingComposite.adjacency
Adjacency structure for the composed sampler.

Type dict[variable, set]

dwave.system.composites.LazyFixedEmbeddingComposite.edgelist

LazyFixedEmbeddingComposite.edgelist
Edges available to the composed sampler.

Type list

dwave.system.composites.LazyFixedEmbeddingComposite.nodelist

LazyFixedEmbeddingComposite.nodelist
Nodes available to the composed sampler.

Type list

dwave.system.composites.LazyFixedEmbeddingComposite.parameters

LazyFixedEmbeddingComposite.parameters = None

dwave.system.composites.LazyFixedEmbeddingComposite.properties

LazyFixedEmbeddingComposite.properties = None

dwave.system.composites.LazyFixedEmbeddingComposite.structure

LazyFixedEmbeddingComposite.structure
Structure of the structured sampler formatted as a namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

40 Chapter 1. Documentation

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.html#collections.namedtuple

dwave-system Documentation, Release 1.18.0

Methods

LazyFixedEmbeddingComposite.
sample(bqm, . . .)

Sample the binary quadratic model.

LazyFixedEmbeddingComposite.
sample_ising(h, . . .)

Sample from an Ising model using the implemented
sample method.

LazyFixedEmbeddingComposite.
sample_qubo(Q, . . .)

Sample from a QUBO using the implemented sample
method.

dwave.system.composites.LazyFixedEmbeddingComposite.sample

LazyFixedEmbeddingComposite.sample(bqm, **parameters)
Sample the binary quadratic model.

On the first call of a sampling method, finds a minor-embedding for the given binary quadratic model (BQM).
All subsequent calls to its sampling methods reuse this embedding.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• chain_strength (float/mapping/callable, optional) – Sets the coupling
strength between qubits representing variables that form a chain. Mappings should spec-
ify the required chain strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default, chain_strength is calculated with
uniform_torque_compensation().

• chain_break_method (function, optional) – Method used to resolve chain
breaks during sample unembedding. See unembed_sampleset().

• chain_break_fraction (bool, optional, default=True) – Add a
‘chain_break_fraction’ field to the unembedded response with the fraction of chains broken
before unembedding.

• embedding_parameters (dict, optional) – If provided, parameters are passed
to the embedding method as keyword arguments. Overrides any embedding_parameters
passed to the constructor. Only used on the first call.

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.SampleSet

dwave.system.composites.LazyFixedEmbeddingComposite.sample_ising

LazyFixedEmbeddingComposite.sample_ising(h: Union[Mapping[Hashable, Union[float,
numpy.floating, numpy.integer]], Se-
quence[Union[float, numpy.floating,
numpy.integer]]], J: Mapping[Tuple[Hashable,
Hashable], Union[float, numpy.floating,
numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

1.2. Reference Documentation 41

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

dwave.system.composites.LazyFixedEmbeddingComposite.sample_qubo

LazyFixedEmbeddingComposite.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable],
Union[float, numpy.floating, numpy.integer]],
**parameters)→ dimod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

TilingComposite

class TilingComposite(sampler, sub_m, sub_n, t=4)
Composite to tile a small problem across a structured sampler.

Enables parallel sampling on Chimera or Pegasus structured samplers of small problems. The small problem
should be defined on a Chimera graph of dimensions sub_m, sub_n, t, or minor-embeddable to such a graph.

Notation PN referes to a Pegasus graph consisting of a 3x(N-1)x(N-1) grid of cells, where each unit cell is
a bipartite graph with shore of size t, supplemented with odd couplers (see nice_coordinate definition
in the dwave_networkx.pegasus_graph() function). The Advantage QPU supports a P16 Pegasus
graph: its qubits may be mapped to a 3x15x15 matrix of unit cells, each of 8 qubits. This code supports
tiling of Chimera-structured problems, with an option of additional odd-couplers, onto Pegasus. See also the
dwave_networkx.pegasus_graph() function.

Notation CN refers to a Chimera graph consisting of an NxN grid of unit cells, where each unit cell is a bipartite
graph with shores of size t. (An earlier quantum computer, the D-Wave 2000Q, supported a C16 Chimera
graph: its 2048 qubits were logically mapped into a 16x16 matrix of unit cells of 8 qubits (t=4). See also the
dwave_networkx.chimera_graph() function.)

A problem that can be minor-embedded in a single chimera unit cell, for example, can therefore be tiled as
3x15x15 duplicates across an Advantage QPU (or, previously, over the unit cells of a D-Wave 2000Q as 16x16

42 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.pegasus_graph.html#dwave_networkx.pegasus_graph
https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.pegasus_graph.html#dwave_networkx.pegasus_graph
https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.chimera_graph.html#dwave_networkx.chimera_graph

dwave-system Documentation, Release 1.18.0

duplicates), subject to solver yield. This enables over 600 (256 for the D-Wave 2000Q) parallel samples per
read.

Parameters

• sampler (dimod.Sampler) – Structured dimod sampler such as a
DWaveSampler().

• sub_m (int) – Minimum number of Chimera unit cell rows required for minor-embedding
a single instance of the problem.

• sub_n (int) – Minimum number of Chimera unit cell columns required for minor-
embedding a single instance of the problem.

• t (int, optional, default=4) – Size of the shore within each Chimera unit cell.

Examples

This example submits a two-variable QUBO problem representing a logical NOT gate to a D-Wave system. The
QUBO—two nodes with biases of -1 that are coupled with strength 2—needs only any two coupled qubits and
so is easily minor-embedded in a single unit cell. Composite TilingComposite tiles it multiple times for
parallel solution: the two nodes should typically have opposite values.

>>> from dwave.system import DWaveSampler, EmbeddingComposite
>>> from dwave.system import TilingComposite
...
>>> sampler = EmbeddingComposite(TilingComposite(DWaveSampler(), 1, 1, 4))
>>> Q = {(1, 1): -1, (1, 2): 2, (2, 1): 0, (2, 2): -1}
>>> sampleset = sampler.sample_qubo(Q)
>>> len(sampleset)> 1
True

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

Properties

TilingComposite.adjacency Adjacency structure formatted as a dict, where keys are
the nodes of the structured sampler and values are sets
of all adjacent nodes for each key node.

TilingComposite.child The child sampler.
TilingComposite.children The single wrapped structured sampler.
TilingComposite.edgelist List of active couplers for the structured solver.
TilingComposite.embeddings Embeddings into each available tile on the structured

solver.
TilingComposite.nodelist List of active qubits for the structured solver.
TilingComposite.num_tiles Number of tiles available for replicating the problem.
TilingComposite.parameters Parameters in the form of a dict.
TilingComposite.properties Properties in the form of a dict.
TilingComposite.structure Structure of the structured sampler formatted as a

namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

1.2. Reference Documentation 43

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.ocean.dwavesys.com/en/stable/concepts/index.html
https://docs.python.org/3/library/collections.html#collections.namedtuple

dwave-system Documentation, Release 1.18.0

dwave.system.composites.TilingComposite.adjacency

TilingComposite.adjacency
Adjacency structure formatted as a dict, where keys are the nodes of the structured sampler and values are sets
of all adjacent nodes for each key node.

dwave.system.composites.TilingComposite.child

TilingComposite.child
The child sampler. First sampler in Composite.children.

Type Sampler

dwave.system.composites.TilingComposite.children

TilingComposite.children = None
The single wrapped structured sampler.

Type list

dwave.system.composites.TilingComposite.edgelist

TilingComposite.edgelist = None
List of active couplers for the structured solver.

Type list

dwave.system.composites.TilingComposite.embeddings

TilingComposite.embeddings = []
Embeddings into each available tile on the structured solver.

Type list

dwave.system.composites.TilingComposite.nodelist

TilingComposite.nodelist = None
List of active qubits for the structured solver.

Type list

dwave.system.composites.TilingComposite.num_tiles

TilingComposite.num_tiles
Number of tiles available for replicating the problem.

44 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

dwave-system Documentation, Release 1.18.0

dwave.system.composites.TilingComposite.parameters

TilingComposite.parameters = None
Parameters in the form of a dict.

Type dict[str, list]

dwave.system.composites.TilingComposite.properties

TilingComposite.properties = None
Properties in the form of a dict.

Type dict

dwave.system.composites.TilingComposite.structure

TilingComposite.structure
Structure of the structured sampler formatted as a namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

Methods

TilingComposite.sample(bqm, **kwargs) Sample from the specified binary quadratic model.
TilingComposite.sample_ising(h,
Union[float, . . .)

Sample from an Ising model using the implemented
sample method.

TilingComposite.sample_qubo(Q, Hashable],
. . .)

Sample from a QUBO using the implemented sample
method.

dwave.system.composites.TilingComposite.sample

TilingComposite.sample(bqm, **kwargs)
Sample from the specified binary quadratic model.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• **kwargs – Optional keyword arguments for the sampling method, specified per solver.

Returns dimod.SampleSet

Examples

This example submits a simple Ising problem of just two variables on a D-Wave system. Because the problem
fits in a single Chimera unit cell, it is tiled across the solver’s entire Chimera graph, resulting in multiple samples
(the exact number depends on the working Chimera graph of the D-Wave system).

>>> from dwave.system import DWaveSampler, EmbeddingComposite
>>> from dwave.system import TilingComposite
...
>>> sampler = EmbeddingComposite(TilingComposite(DWaveSampler(), 1, 1, 4))

(continues on next page)

1.2. Reference Documentation 45

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

(continued from previous page)

>>> sampleset = sampler.sample_ising({},{('a', 'b'): 1})
>>> len(sampleset) > 1
True

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

dwave.system.composites.TilingComposite.sample_ising

TilingComposite.sample_ising(h: Union[Mapping[Hashable, Union[float, numpy.floating,
numpy.integer]], Sequence[Union[float, numpy.floating,
numpy.integer]]], J: Mapping[Tuple[Hashable, Hashable],
Union[float, numpy.floating, numpy.integer]], **parameters) →
dimod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

dwave.system.composites.TilingComposite.sample_qubo

TilingComposite.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

46 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/concepts/index.html

dwave-system Documentation, Release 1.18.0

VirtualGraphComposite

class VirtualGraphComposite(sampler, embedding, chain_strength=None, flux_biases=None,
flux_bias_num_reads=1000, flux_bias_max_age=3600)

Composite to use the D-Wave virtual graph feature for minor-embedding.

Calibrates qubits in chains to compensate for the effects of biases and enables easy creation, optimization, use,
and reuse of an embedding for a given working graph.

Inherits from dimod.ComposedSampler and dimod.Structured.

Parameters

• sampler (DWaveSampler) – A dimod dimod.Sampler. Typically a
DWaveSampler or derived composite sampler; other samplers may not work or
make sense with this composite layer.

• embedding (dict[hashable, iterable]) – Mapping from a source graph to the
specified sampler’s graph (the target graph).

• chain_strength (float, optional, default=None) – Desired chain cou-
pling strength. This is the magnitude of couplings between qubits in a chain. If None,
uses the maximum available as returned by a SAPI query to the D-Wave solver.

• flux_biases (list/False/None, optional, default=None) – Per-qubit
flux bias offsets in the form of a list of lists, where each sublist is of length 2 and speci-
fies a variable and the flux bias offset associated with that variable. Qubits in a chain with
strong negative J values experience a J-induced bias; this parameter compensates by recal-
ibrating to remove that bias. If False, no flux bias is applied or calculated. If None, flux
biases are pulled from the database or calculated empirically.

• flux_bias_num_reads (int, optional, default=1000) – Number of sam-
ples to collect per flux bias value to calculate calibration information.

• flux_bias_max_age (int, optional, default=3600) – Maximum age (in
seconds) allowed for a previously calculated flux bias offset to be considered valid.

Attention: D-Wave’s virtual graphs feature can require many seconds of D-Wave system time to calibrate
qubits to compensate for the effects of biases. If your account has limited D-Wave system access, consider
using FixedEmbeddingComposite instead.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler that submits an Ising prob-
lem to a D-Wave solver. This simple three-variable problem is manually minor-embedded such that variables a
and b are represented by single qubits while variable c is represented by a four-qubit chain. The chain strength
is set to the maximum allowed found from querying the solver’s extended J range. The minor embedding shown
below was for an execution of this example on a particular Advantage system; select a suitable embedding for
the QPU you use.

>>> from dwave.system import DWaveSampler, VirtualGraphComposite
...
>>> h = {'a': 1, 'b': -1}
>>> J = {('b', 'c'): -1, ('a', 'c'): -1}
...
>>> qpu = DWaveSampler()

(continues on next page)

1.2. Reference Documentation 47

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.ComposedSampler
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Structured
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

dwave-system Documentation, Release 1.18.0

(continued from previous page)

>>> embedding = {'a': [2656], 'c': [2641, 2642, 2643, 2644], 'b': [2659]}
>>> qpu.properties['extended_j_range']
[-2.0, 1.0]
>>> # Sample using VirtualGraphComposite
>>> sampler = VirtualGraphComposite(qpu, embedding, chain_strength=2) # doctest:
→˓+SKIP
>>> sampleset = sampler.sample_ising(h, J, num_reads=100) # doctest: +SKIP
>>> print(sampleset) # doctest: +SKIP

a b c energy num_oc. chain_.
0 +1 +1 +1 -2.0 21 0.0
1 -1 +1 +1 -2.0 66 0.0
2 -1 -1 -1 -2.0 8 0.0
3 -1 +1 -1 -2.0 5 0.0
['SPIN', 4 rows, 100 samples, 3 variables]

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

Properties

VirtualGraphComposite.adjacency Adjacency structure for the composed sampler.
VirtualGraphComposite.child The child sampler.
VirtualGraphComposite.children
VirtualGraphComposite.edgelist Edges available to the composed sampler.
VirtualGraphComposite.nodelist Nodes available to the composed sampler.
VirtualGraphComposite.parameters
VirtualGraphComposite.properties
VirtualGraphComposite.structure Structure of the structured sampler formatted as a

namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

dwave.system.composites.VirtualGraphComposite.adjacency

VirtualGraphComposite.adjacency
Adjacency structure for the composed sampler.

Type dict[variable, set]

dwave.system.composites.VirtualGraphComposite.child

VirtualGraphComposite.child
The child sampler. First sampler in Composite.children.

Type Sampler

dwave.system.composites.VirtualGraphComposite.children

VirtualGraphComposite.children = None

48 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/concepts/index.html
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set

dwave-system Documentation, Release 1.18.0

dwave.system.composites.VirtualGraphComposite.edgelist

VirtualGraphComposite.edgelist
Edges available to the composed sampler.

Type list

dwave.system.composites.VirtualGraphComposite.nodelist

VirtualGraphComposite.nodelist
Nodes available to the composed sampler.

Type list

dwave.system.composites.VirtualGraphComposite.parameters

VirtualGraphComposite.parameters = None

dwave.system.composites.VirtualGraphComposite.properties

VirtualGraphComposite.properties = None

dwave.system.composites.VirtualGraphComposite.structure

VirtualGraphComposite.structure
Structure of the structured sampler formatted as a namedtuple() where the 3-tuple values are the
nodelist, edgelist and adjacency attributes.

Methods

VirtualGraphComposite.sample(bqm[, . . .]) Sample from the given Ising model.
VirtualGraphComposite.sample_ising(h,
. . .)

Sample from an Ising model using the implemented
sample method.

VirtualGraphComposite.sample_qubo(Q,
. . .)

Sample from a QUBO using the implemented sample
method.

dwave.system.composites.VirtualGraphComposite.sample

VirtualGraphComposite.sample(bqm, apply_flux_bias_offsets=True, **kwargs)
Sample from the given Ising model.

Parameters

• h (list/dict) – Linear biases of the Ising model. If a list, the list’s indices are used as
variable labels.

• J (dict of (int, int) – float): Quadratic biases of the Ising model.

• apply_flux_bias_offsets (bool, optional) – If True, use the calculated
flux_bias offsets (if available).

1.2. Reference Documentation 49

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

dwave-system Documentation, Release 1.18.0

• **kwargs – Optional keyword arguments for the sampling method, specified per solver.

See Ocean Glossary for explanations of technical terms in descriptions of Ocean tools.

dwave.system.composites.VirtualGraphComposite.sample_ising

VirtualGraphComposite.sample_ising(h: Union[Mapping[Hashable, Union[float,
numpy.floating, numpy.integer]], Sequence[Union[float,
numpy.floating, numpy.integer]]], J: Map-
ping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) →
dimod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

dwave.system.composites.VirtualGraphComposite.sample_qubo

VirtualGraphComposite.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

Reverse Anneal

Composites that do batch operations for reverse annealing based on sets of initial states or anneal schedules.

50 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/concepts/index.html

dwave-system Documentation, Release 1.18.0

ReverseBatchStatesComposite

class ReverseBatchStatesComposite(child_sampler)
Composite that reverse anneals from multiple initial samples. Each submission is independent from one another.

Parameters sampler (dimod.Sampler) – A dimod sampler.

Examples

This example runs 100 reverse anneals each from two initial states on a problem constructed by setting ran-
dom ±1 values on a clique (complete graph) of 15 nodes, minor-embedded on a D-Wave system using the
DWaveCliqueSampler sampler.

>>> import dimod
>>> from dwave.system import DWaveCliqueSampler, ReverseBatchStatesComposite
...
>>> sampler = DWaveCliqueSampler() # doctest: +SKIP
>>> sampler_reverse = ReverseBatchStatesComposite(sampler) # doctest: +SKIP
>>> schedule = [[0.0, 1.0], [10.0, 0.5], [20, 1.0]]
...
>>> bqm = dimod.generators.ran_r(1, 15)
>>> init_samples = [{i: -1 for i in range(15)}, {i: 1 for i in range(15)}]
>>> sampleset = sampler_reverse.sample(bqm,
... anneal_schedule=schedule,
... initial_states=init_samples,
... num_reads=100,
... reinitialize_state=True) # doctest: +SKIP

Properties

ReverseBatchStatesComposite.child The child sampler.
ReverseBatchStatesComposite.children List of child samplers that that are used by this compos-

ite.
ReverseBatchStatesComposite.
parameters

Parameters as a dict, where keys are keyword param-
eters accepted by the sampler methods and values are
lists of the properties relevent to each parameter.

ReverseBatchStatesComposite.
properties

Properties as a dict containing any additional informa-
tion about the sampler.

dwave.system.composites.ReverseBatchStatesComposite.child

ReverseBatchStatesComposite.child
The child sampler. First sampler in Composite.children.

Type Sampler

dwave.system.composites.ReverseBatchStatesComposite.children

ReverseBatchStatesComposite.children
List of child samplers that that are used by this composite.

Type list[Sampler]

1.2. Reference Documentation 51

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler

dwave-system Documentation, Release 1.18.0

dwave.system.composites.ReverseBatchStatesComposite.parameters

ReverseBatchStatesComposite.parameters
Parameters as a dict, where keys are keyword parameters accepted by the sampler methods and values are lists
of the properties relevent to each parameter.

dwave.system.composites.ReverseBatchStatesComposite.properties

ReverseBatchStatesComposite.properties
Properties as a dict containing any additional information about the sampler.

Methods

ReverseBatchStatesComposite.
sample(bqm[, . . .])

Sample the binary quadratic model using reverse an-
nealing from multiple initial states.

ReverseBatchStatesComposite.
sample_ising(h, . . .)

Sample from an Ising model using the implemented
sample method.

ReverseBatchStatesComposite.
sample_qubo(Q, . . .)

Sample from a QUBO using the implemented sample
method.

dwave.system.composites.ReverseBatchStatesComposite.sample

ReverseBatchStatesComposite.sample(bqm, initial_states=None, ini-
tial_states_generator=’random’, num_reads=None,
seed=None, **parameters)

Sample the binary quadratic model using reverse annealing from multiple initial states.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• initial_states (samples-like, optional, default=None) – One or
more samples, each defining an initial state for all the problem variables. If fewer than
num_reads initial states are defined, additional values are generated as specified by ini-
tial_states_generator. See dimod.as_samples() for a description of “samples-like”.

• initial_states_generator ({'none', 'tile', 'random'},
optional, default='random') – Defines the expansion of initial_states if
fewer than num_reads are specified:

– ”none”: If the number of initial states specified is smaller than num_reads, raises Val-
ueError.

– ”tile”: Reuses the specified initial states if fewer than num_reads or truncates if greater.

– ”random”: Expands the specified initial states with randomly generated states if fewer
than num_reads or truncates if greater.

• num_reads (int, optional, default=len(initial_states) or 1) –
Equivalent to number of desired initial states. If greater than the number of provided initial
states, additional states will be generated. If not provided, it is selected to match the length
of initial_states. If initial_states is not provided, num_reads defaults to 1.

• seed (int (32-bit unsigned integer), optional) – Seed to use for the
PRNG. Specifying a particular seed with a constant set of parameters produces identical

52 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

dwave-system Documentation, Release 1.18.0

results. If not provided, a random seed is chosen.

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.SampleSet that has initial_state field.

Examples

This example runs 100 reverse anneals each from two initial states on a problem constructed by setting ran-
dom ±1 values on a clique (complete graph) of 15 nodes, minor-embedded on a D-Wave system using the
DWaveCliqueSampler sampler.

>>> import dimod
>>> from dwave.system import DWaveCliqueSampler, ReverseBatchStatesComposite
...
>>> sampler = DWaveCliqueSampler() # doctest: +SKIP
>>> sampler_reverse = ReverseBatchStatesComposite(sampler) # doctest: +SKIP
>>> schedule = [[0.0, 1.0], [10.0, 0.5], [20, 1.0]]
...
>>> bqm = dimod.generators.ran_r(1, 15)
>>> init_samples = [{i: -1 for i in range(15)}, {i: 1 for i in range(15)}]
>>> sampleset = sampler_reverse.sample(bqm,
... anneal_schedule=schedule,
... initial_states=init_samples,
... num_reads=100,
... reinitialize_state=True) # doctest: +SKIP

dwave.system.composites.ReverseBatchStatesComposite.sample_ising

ReverseBatchStatesComposite.sample_ising(h: Union[Mapping[Hashable, Union[float,
numpy.floating, numpy.integer]], Se-
quence[Union[float, numpy.floating,
numpy.integer]]], J: Mapping[Tuple[Hashable,
Hashable], Union[float, numpy.floating,
numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

1.2. Reference Documentation 53

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

dwave.system.composites.ReverseBatchStatesComposite.sample_qubo

ReverseBatchStatesComposite.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable],
Union[float, numpy.floating, numpy.integer]],
**parameters)→ dimod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

ReverseAdvanceComposite

class ReverseAdvanceComposite(child_sampler)
Composite that reverse anneals an initial sample through a sequence of anneal schedules.

If you do not specify an initial sample, a random sample is used for the first submission. By default, each sub-
sequent submission selects the most-found lowest-energy sample as its initial state. If you set reinitialize_state
to False, which makes each submission behave like a random walk, the subsequent submission selects the last
returned sample as its initial state.

Parameters sampler (dimod.Sampler) – A dimod sampler.

Examples

This example runs 100 reverse anneals each for three schedules on a problem constructed by setting ran-
dom ±1 values on a clique (complete graph) of 15 nodes, minor-embedded on a D-Wave system using the
DWaveCliqueSampler sampler.

>>> import dimod
>>> from dwave.system import DWaveCliqueSampler, ReverseAdvanceComposite
...
>>> sampler = DWaveCliqueSampler() # doctest: +SKIP
>>> sampler_reverse = ReverseAdvanceComposite(sampler) # doctest: +SKIP
>>> schedule = [[[0.0, 1.0], [t, 0.5], [20, 1.0]] for t in (5, 10, 15)]
...
>>> bqm = dimod.generators.ran_r(1, 15)
>>> init_samples = {i: -1 for i in range(15)}
>>> sampleset = sampler_reverse.sample(bqm,
... anneal_schedules=schedule,
... initial_state=init_samples,
... num_reads=100,
... reinitialize_state=True) # doctest:
→˓+SKIP

54 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler

dwave-system Documentation, Release 1.18.0

Properties

ReverseAdvanceComposite.child The child sampler.
ReverseAdvanceComposite.children List of child samplers that that are used by this compos-

ite.
ReverseAdvanceComposite.parameters Parameters as a dict, where keys are keyword param-

eters accepted by the sampler methods and values are
lists of the properties relevent to each parameter.

ReverseAdvanceComposite.properties Properties as a dict containing any additional informa-
tion about the sampler.

dwave.system.composites.ReverseAdvanceComposite.child

ReverseAdvanceComposite.child
The child sampler. First sampler in Composite.children.

Type Sampler

dwave.system.composites.ReverseAdvanceComposite.children

ReverseAdvanceComposite.children
List of child samplers that that are used by this composite.

Type list[Sampler]

dwave.system.composites.ReverseAdvanceComposite.parameters

ReverseAdvanceComposite.parameters
Parameters as a dict, where keys are keyword parameters accepted by the sampler methods and values are lists
of the properties relevent to each parameter.

dwave.system.composites.ReverseAdvanceComposite.properties

ReverseAdvanceComposite.properties
Properties as a dict containing any additional information about the sampler.

Methods

ReverseAdvanceComposite.sample(bqm[,
. . .])

Sample the binary quadratic model using reverse an-
nealing along a given set of anneal schedules.

ReverseAdvanceComposite.
sample_ising(h, . . .)

Sample from an Ising model using the implemented
sample method.

ReverseAdvanceComposite.
sample_qubo(Q, . . .)

Sample from a QUBO using the implemented sample
method.

1.2. Reference Documentation 55

dwave-system Documentation, Release 1.18.0

dwave.system.composites.ReverseAdvanceComposite.sample

ReverseAdvanceComposite.sample(bqm, anneal_schedules=None, **parameters)
Sample the binary quadratic model using reverse annealing along a given set of anneal schedules.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• anneal_schedules (list of lists, optional, default=[[[0, 1],
[1, 0.35], [9, 0.35], [10, 1]]]) – Anneal schedules in order of submission.
Each schedule is formatted as a list of [time, s] pairs, in which time is in microseconds and
s is the normalized persistent current in the range [0,1].

• initial_state (dict, optional) – The state to reverse anneal from. If not pro-
vided, it will be randomly generated.

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.SampleSet that has initial_state and schedule_index fields.

Examples

This example runs 100 reverse anneals each for three schedules on a problem constructed by setting ran-
dom ±1 values on a clique (complete graph) of 15 nodes, minor-embedded on a D-Wave system using the
DWaveCliqueSampler sampler.

>>> import dimod
>>> from dwave.system import DWaveCliqueSampler, ReverseAdvanceComposite
...
>>> sampler = DWaveCliqueSampler() # doctest: +SKIP
>>> sampler_reverse = ReverseAdvanceComposite(sampler) # doctest: +SKIP
>>> schedule = [[[0.0, 1.0], [t, 0.5], [20, 1.0]] for t in (5, 10, 15)]
...
>>> bqm = dimod.generators.ran_r(1, 15)
>>> init_samples = {i: -1 for i in range(15)}
>>> sampleset = sampler_reverse.sample(bqm,
... anneal_schedules=schedule,
... initial_state=init_samples,
... num_reads=100,
... reinitialize_state=True) # doctest: +SKIP

dwave.system.composites.ReverseAdvanceComposite.sample_ising

ReverseAdvanceComposite.sample_ising(h: Union[Mapping[Hashable, Union[float,
numpy.floating, numpy.integer]], Se-
quence[Union[float, numpy.floating, numpy.integer]]],
J: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) →
dimod.sampleset.SampleSet

Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

56 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-system Documentation, Release 1.18.0

• h – Linear biases of the Ising problem. If a list, indices are the variable labels.

• J – Quadratic biases of the Ising problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from the Ising model.

See also:

sample(), sample_qubo()

dwave.system.composites.ReverseAdvanceComposite.sample_qubo

ReverseAdvanceComposite.sample_qubo(Q: Mapping[Tuple[Hashable, Hashable], Union[float,
numpy.floating, numpy.integer]], **parameters) → di-
mod.sampleset.SampleSet

Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the quadratic unconstrained binary optimization (QUBO) into a BinaryQuadraticModel and
then calls sample().

Parameters

• Q – Coefficients of a QUBO problem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns: Samples from a QUBO.

See also:

sample(), sample_ising()

1.2.3 Embedding

Provides functions that map binary quadratic models and samples between a source graph and a target graph.

For an introduction to minor-embedding, see Minor-Embedding.

Generators

Tools for finding embeddings.

Generic

minorminer is a heuristic tool for minor embedding: given a minor and target graph, it tries to find a mapping that
embeds the minor into the target.

minorminer.find_embedding Heuristically attempt to find a minor-embedding of
source graph S into a target graph T.

1.2. Reference Documentation 57

https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-binary-quadratic-model
https://docs.ocean.dwavesys.com/en/stable/concepts/embedding.html
https://docs.ocean.dwavesys.com/en/stable/docs_minorminer/source/sdk_index.html

dwave-system Documentation, Release 1.18.0

minorminer.find_embedding

find_embedding()
Heuristically attempt to find a minor-embedding of source graph S into a target graph T.

Parameters

• S (iterable/NetworkX Graph) – The source graph as an iterable of label pairs rep-
resenting the edges, or a NetworkX Graph.

• T (iterable/NetworkX Graph) – The target graph as an iterable of label pairs repre-
senting the edges, or a NetworkX Graph.

• **params (optional) – See below.

Returns

When the optional parameter return_overlap is False (the default), the function returns a
dict that maps labels in S to lists of labels in T. If the heuristic fails to find an embedding, an
empty dictionary is returned.

When return_overlap is True, the function returns a tuple consisting of a dict that maps
labels in S to lists of labels in T and a bool indicating whether or not a valid embedding was
found.

When interrupted by Ctrl-C, the function returns the best embedding found so far.

Note that failure to return an embedding does not prove that no embedding exists.

Optional Parameters:

max_no_improvement (int, optional, default=10): Maximum number of failed iterations to improve the
current solution, where each iteration attempts to find an embedding for each variable of S such that
it is adjacent to all its neighbours.

random_seed (int, optional, default=None): Seed for the random number generator. If None, seed is set
by os.urandom().

timeout (int, optional, default=1000): Algorithm gives up after timeout seconds.

max_beta (double, optional, max_beta=None): Qubits are assigned weight according to a formula
(beta^n) where n is the number of chains containing that qubit. This value should never be less
than or equal to 1. If None, max_beta is effectively infinite.

tries (int, optional, default=10): Number of restart attempts before the algorithm stops. On D-WAVE
2000Q, a typical restart takes between 1 and 60 seconds.

inner_rounds (int, optional, default=None): The algorithm takes at most this many iterations between
restart attempts; restart attempts are typically terminated due to max_no_improvement. If None,
inner_rounds is effectively infinite.

chainlength_patience (int, optional, default=10): Maximum number of failed iterations to improve
chain lengths in the current solution, where each iteration attempts to find an embedding for each
variable of S such that it is adjacent to all its neighbours.

max_fill (int, optional, default=None): Restricts the number of chains that can simultaneously incorpo-
rate the same qubit during the search. Values above 63 are treated as 63. If None, max_fill is
effectively infinite.

threads (int, optional, default=1): Maximum number of threads to use. Note that the parallelization is
only advantageous where the expected degree of variables is significantly greater than the number of
threads. Value must be greater than 1.

58 Chapter 1. Documentation

dwave-system Documentation, Release 1.18.0

return_overlap (bool, optional, default=False): This function returns an embedding, regardless of
whether or not qubits are used by multiple variables. return_overlap determines the function’s
return value. If True, a 2-tuple is returned, in which the first element is the embedding and the second
element is a bool representing the embedding validity. If False, only an embedding is returned.

skip_initialization (bool, optional, default=False): Skip the initialization pass. Note that this only
works if the chains passed in through initial_chains and fixed_chains are semi-valid.
A semi-valid embedding is a collection of chains such that every adjacent pair of variables (u,v) has a
coupler (p,q) in the hardware graph where p is in chain(u) and q is in chain(v). This can be used on a
valid embedding to immediately skip to the chain length improvement phase. Another good source of
semi-valid embeddings is the output of this function with the return_overlap parameter enabled.

verbose (int, optional, default=0): Level of output verbosity.

When set to 0: Output is quiet until the final result.

When set to 1: Output looks like this:

initialized
max qubit fill 3; num maxfull qubits=3
embedding trial 1
max qubit fill 2; num maxfull qubits=21
embedding trial 2
embedding trial 3
embedding trial 4
embedding trial 5
embedding found.
max chain length 4; num max chains=1
reducing chain lengths
max chain length 3; num max chains=5

When set to 2: Output the information for lower levels and also report progress on minor statistics
(when searching for an embedding, this is when the number of maxfull qubits decreases; when
improving, this is when the number of max chains decreases).

When set to 3: Report before each pass. Look here when tweaking tries, inner_rounds, and
chainlength_patience.

When set to 4: Report additional debugging information. By default, this package is built without
this functionality. In the C++ headers, this is controlled by the CPPDEBUG flag.

Detailed explanation of the output information:

max qubit fill: Largest number of variables represented in a qubit.

num maxfull: Number of qubits that have max overfill.

max chain length: Largest number of qubits representing a single variable.

num max chains: Number of variables that have max chain size.

interactive (bool, optional, default=False): If logging is None or False, the verbose output will be
printed to stdout/stderr as appropriate, and keyboard interrupts will stop the embedding process
and the current state will be returned to the user. Otherwise, output will be directed to the logger
logging.getLogger(minorminer.__name__) and keyboard interrupts will be propagated
back to the user. Errors will use logger.error(), verbosity levels 1 through 3 will use logger.
info() and level 4 will use logger.debug().

initial_chains (dict, optional): Initial chains inserted into an embedding before fixed_chains are
placed, which occurs before the initialization pass. These can be used to restart the algorithm in a
similar state to a previous embedding; for example, to improve chain length of a valid embedding or
to reduce overlap in a semi-valid embedding (see skip_initialization) previously returned

1.2. Reference Documentation 59

dwave-system Documentation, Release 1.18.0

by the algorithm. Missing or empty entries are ignored. Each value in the dictionary is a list of qubit
labels.

fixed_chains (dict, optional): Fixed chains inserted into an embedding before the initialization pass. As
the algorithm proceeds, these chains are not allowed to change, and the qubits used by these chains
are not used by other chains. Missing or empty entries are ignored. Each value in the dictionary is a
list of qubit labels.

restrict_chains (dict, optional): Throughout the algorithm, it is guaranteed that chain[i] is a subset of
restrict_chains[i] for each i, except those with missing or empty entries. Each value in the
dictionary is a list of qubit labels.

suspend_chains (dict, optional): This is a metafeature that is only implemented in the Python inter-
face. suspend_chains[i] is an iterable of iterables; for example, suspend_chains[i] =
[blob_1, blob_2], with each blob_j an iterable of target node labels.

This enforces the following:

for each suspended variable i,
for each blob_j in the suspension of i,

at least one qubit from blob_j will be contained in the chain for
→˓i

We accomplish this through the following problem transformation for each iterable blob_j in
suspend_chains[i],

• Add an auxiliary node Zij to both source and target graphs

• Set fixed_chains[Zij] = [Zij]

• Add the edge (i,Zij) to the source graph

• Add the edges (q,Zij) to the target graph for each q in blob_j

Chimera

Minor-embedding in Chimera-structured target graphs.

chimera.find_clique_embedding(k[, m, n, t,
. . .])

Find an embedding for a clique in a Chimera graph.

chimera.find_biclique_embedding(a, b[, m,
. . .])

Find an embedding for a biclique in a Chimera graph.

chimera.find_grid_embedding(dim, m[, n, t]) Find an embedding for a grid in a Chimera graph.

dwave.embedding.chimera.find_clique_embedding

find_clique_embedding(k, m=None, n=None, t=None, target_edges=None, target_graph=None)
Find an embedding for a clique in a Chimera graph.

Given the node labels or size of a clique (fully connected graph) and size or edges of the target Chimera graph,
attempts to find an embedding.

Parameters

• k (int/iterable) – Clique to embed. If k is an integer, generates an embedding for a
clique of size k labelled [0,k-1]. If k is an iterable of nodes, generates an embedding for a
clique of size len(k) labelled for the given nodes.

60 Chapter 1. Documentation

dwave-system Documentation, Release 1.18.0

• m (int, optional, default=None) – Number of rows in the Chimera lattice.

• n (int, optional, default=m) – Number of columns in the Chimera lattice.

• t (int, optional, default 4) – Size of the shore within each Chimera tile.

• target_edges (iterable[edge]) – A list of edges in the target Chimera graph.
Nodes are labelled as returned by chimera_graph().

• target_graph (networkx.Graph) – A Chimera graph constructed by
chimera_graph().

Returns An embedding mapping a clique to the Chimera lattice.

Return type dict

Note: Either target_edges or target_graph must be None. If both are None, a graph with perfect yield is
assumed from the parameters m, n, t. If target_edges is not None, at least m must not be None.

Examples

The first example finds an embedding for a 𝐾4 complete graph in a single Chimera unit cell. The second for an
alphanumerically labeled 𝐾3 graph in 4 unit cells.

>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(4, 1, 1)
>>> embedding # doctest: +SKIP
{0: [4, 0], 1: [5, 1], 2: [6, 2], 3: [7, 3]}

>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(['a', 'b', 'c'], m=2, n=2, t=4)
>>> embedding # doctest: +SKIP
{'a': [20, 16], 'b': [21, 17], 'c': [22, 18]}

dwave.embedding.chimera.find_biclique_embedding

find_biclique_embedding(a, b, m=None, n=None, t=None, target_edges=None, target_graph=None)
Find an embedding for a biclique in a Chimera graph.

Given a biclique (a bipartite graph where every vertex in a set in connected to all vertices in the other set) and a
target Chimera graph size or edges, attempts to find an embedding.

Parameters

• a (int/iterable) – Left shore of the biclique to embed. If a is an integer, generates an
embedding for a biclique with the left shore of size a labelled [0,a-1]. If a is an iterable of
nodes, generates an embedding for a biclique with the left shore of size len(a) labelled for
the given nodes.

• b (int/iterable) – Right shore of the biclique to embed.If b is an integer, generates an
embedding for a biclique with the right shore of size b labelled [0,b-1]. If b is an iterable of
nodes, generates an embedding for a biclique with the right shore of size len(b) labelled for
the given nodes.

1.2. Reference Documentation 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.chimera_graph.html#dwave_networkx.chimera_graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.chimera_graph.html#dwave_networkx.chimera_graph
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 1.18.0

• m (int, optional, default=None) – Number of rows in the Chimera lattice.

• n (int, optional, default=m) – Number of columns in the Chimera lattice.

• t (int, optional, default 4) – Size of the shore within each Chimera tile.

• target_edges (iterable[edge]) – A list of edges in the target Chimera graph.
Nodes are labelled as returned by chimera_graph().

• target_graph (networkx.Graph) – A Chimera graph constructed by
chimera_graph().

Returns

A 2-tuple containing:

dict: An embedding mapping the left shore of the biclique to the Chimera lattice.

dict: An embedding mapping the right shore of the biclique to the Chimera lattice.

Return type tuple

Note: Either target_edges or target_graph must be None. If both are None, a graph with perfect yield is
assumed from the parameters m, n, t. If target_edges is not None, at least m must not be None.

Examples

This example finds an embedding for an alphanumerically labeled biclique in a single Chimera unit cell.

>>> from dwave.embedding.chimera import find_biclique_embedding
...
>>> left, right = find_biclique_embedding(['a', 'b', 'c'], ['d', 'e'], 1, 1)
>>> print(left, right) # doctest: +SKIP
{'a': [4], 'b': [5], 'c': [6]} {'d': [0], 'e': [1]}

dwave.embedding.chimera.find_grid_embedding

find_grid_embedding(dim, m, n=None, t=4)
Find an embedding for a grid in a Chimera graph.

Given grid dimensions and a target Chimera graph size, attempts to find an embedding.

Parameters

• dim (iterable[int]) – Sizes of each grid dimension. Length can be between 1 and 3.

• m (int) – Number of rows in the Chimera lattice.

• n (int, optional, default=m) – Number of columns in the Chimera lattice.

• t (int, optional, default 4) – Size of the shore within each Chimera tile.

Returns An embedding mapping a grid to the Chimera lattice.

Return type dict

62 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.chimera_graph.html#dwave_networkx.chimera_graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.chimera_graph.html#dwave_networkx.chimera_graph
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 1.18.0

Examples

This example finds an embedding for a 2x3 grid in a 12x12 lattice of Chimera unit cells.

>>> from dwave.embedding.chimera import find_grid_embedding
...
>>> embedding = find_grid_embedding([2, 3], m=12, n=12, t=4)
>>> embedding # doctest: +SKIP
{(0, 0): [0, 4],
(0, 1): [8, 12],
(0, 2): [16, 20],
(1, 0): [96, 100],
(1, 1): [104, 108],
(1, 2): [112, 116]}

Pegasus

Minor-embedding in Pegasus-structured target graphs.

pegasus.find_clique_embedding(k[, m, . . .]) Find an embedding for a clique in a Pegasus graph.
pegasus.find_biclique_embedding(a, b[, m,
. . .])

Find an embedding for a biclique in a Pegasus graph.

dwave.embedding.pegasus.find_clique_embedding

find_clique_embedding(k, m=None, target_graph=None)
Find an embedding for a clique in a Pegasus graph.

Given a clique (fully connected graph) and target Pegasus graph, attempts to find an embedding by transforming
the Pegasus graph into a 𝐾2,2 Chimera graph and then applying a Chimera clique-finding algorithm. Results
are converted back to Pegasus coordinates.

Parameters

• k (int/iterable/networkx.Graph) – A complete graph to embed, formatted as a number
of nodes, node labels, or a NetworkX graph.

• m (int) – Number of tiles in a row of a square Pegasus graph. Required to generate an
m-by-m Pegasus graph when target_graph is None.

• target_graph (networkx.Graph) – A Pegasus graph. Required when m is None.

Returns An embedding as a dict, where keys represent the clique’s nodes and values, formatted as
lists, represent chains of pegasus coordinates.

Return type dict

Examples

This example finds an embedding for a 𝐾3 complete graph in a 2-by-2 Pegaus graph.

>>> from dwave.embedding.pegasus import find_clique_embedding
...
>>> print(find_clique_embedding(3, 2)) # doctest: +SKIP
{0: [10, 34], 1: [35, 11], 2: [32, 12]}

1.2. Reference Documentation 63

https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 1.18.0

dwave.embedding.pegasus.find_biclique_embedding

find_biclique_embedding(a, b, m=None, target_graph=None)
Find an embedding for a biclique in a Pegasus graph.

Given a biclique (a bipartite graph where every vertex in a set in connected to all vertices in the other set) and a
target Pegasus graph size or edges, attempts to find an embedding.

Parameters

• a (int/iterable) – Left shore of the biclique to embed. If a is an integer, generates an
embedding for a biclique with the left shore of size a labelled [0,a-1]. If a is an iterable of
nodes, generates an embedding for a biclique with the left shore of size len(a) labelled for
the given nodes.

• b (int/iterable) – Right shore of the biclique to embed.If b is an integer, generates an
embedding for a biclique with the right shore of size b labelled [0,b-1]. If b is an iterable of
nodes, generates an embedding for a biclique with the right shore of size len(b) labelled for
the given nodes.

• m (int) – Number of tiles in a row of a square Pegasus graph. Required to generate an
m-by-m Pegasus graph when target_graph is None.

• target_graph (networkx.Graph) – A Pegasus graph. Required when m is None.

Returns

A 2-tuple containing:

dict: An embedding mapping the left shore of the biclique to the Pegasus lattice.

dict: An embedding mapping the right shore of the biclique to the Pegasus lattice.

Return type tuple

Examples

This example finds an embedding for an alphanumerically labeled biclique in a small Pegasus graph

>>> from dwave.embedding.pegasus import find_biclique_embedding
...
>>> left, right = find_biclique_embedding(['a', 'b', 'c'], ['d', 'e'], 2)
>>> print(left, right) # doctest: +SKIP
{'a': [40], 'b': [41], 'c': [42]} {'d': [4], 'e': [5]}

Zephyr

Minor-embedding in Zephyr-structured target graphs.

zephyr.find_clique_embedding(k[, m, . . .]) Find an embedding for a clique in a Zephyr graph.
zephyr.find_biclique_embedding(a, b[, m,
. . .])

Find an embedding for a biclique in a Zephyr graph.

64 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#int
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#tuple

dwave-system Documentation, Release 1.18.0

dwave.embedding.zephyr.find_clique_embedding

find_clique_embedding(k, m=None, target_graph=None)
Find an embedding for a clique in a Zephyr graph.

Given a clique (fully connected graph) and target Zephyr graph, attempts to find an embedding.

Parameters

• k (int/iterable/networkx.Graph) – A complete graph to embed, formatted as a number
of nodes, node labels, or a NetworkX graph.

• m (int) – Number of tiles in a row of a square Zephyr graph. Required to generate an
m-by-m Zephyr graph when target_graph is None.

• target_graph (networkx.Graph) – A Zephyr graph. Required when m is None.

Returns An embedding as a dict, where keys represent the clique’s nodes and values, formatted as
lists, represent chains of zephyr coordinates.

Return type dict

Examples

This example finds an embedding for a 𝐾5 complete graph in a 2-by-2 Zephyr graph.

>>> from dwave.embedding.zephyr import find_clique_embedding
>>> find_clique_embedding(5, 2)
{0: (16, 96), 1: (18, 98), 2: (20, 100), 3: (22, 102), 4: (24, 104)}

dwave.embedding.zephyr.find_biclique_embedding

find_biclique_embedding(a, b, m=None, target_graph=None)
Find an embedding for a biclique in a Zephyr graph.

Given a biclique (a bipartite graph where every vertex in a set in connected to all vertices in the other set) and a
target Zephyr graph, attempts to find an embedding.

Parameters

• a (int/iterable) – Describes the left shore of the biclique to embed. If a is an integer,
the left shore will be labelled [0, a-1]. If a is an iterable, the left shore will be labelled by a.

• b (int/iterable) – Describes the right shore of the biclique to embed. If b is an integer
and a is an iterable, the right shore will be labelled [0, b-1]. If both a and b are integers, the
right shore will be labelled [a, a+b-1]. If b is an iterable, the right shore will be labelled by
b.

• m (int) – Number of tiles in a row of a square Zephyr graph. Required to generate an
m-by-m Zephyr graph when target_graph is None.

• target_graph (networkx.Graph) – A Zephyr graph. Required when m is None.

Returns

A 2-tuple containing:

dict: An embedding mapping the left shore of the biclique to the Zephyr lattice.

dict: An embedding mapping the right shore of the biclique to the Zephyr lattice.

1.2. Reference Documentation 65

https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph

dwave-system Documentation, Release 1.18.0

Return type tuple

Examples

This example finds an embedding for an alphanumerically labeled biclique in a 2x2 Zephyr graph.

>>> from dwave.embedding.zephyr import find_biclique_embedding
>>> left, right = find_biclique_embedding(['a', 'b', 'c'], ['d', 'e'], 2)
>>> print(left, right)
{'a': (0,), 'b': (4,), 'c': (8,)} {'d': (80,), 'e': (84,)}

Utilities

embed_bqm(source_bqm[, embedding, . . .]) Embed a binary quadratic model onto a target graph.
embed_ising(source_h, source_J, embedding, . . .) Embed an Ising problem onto a target graph.
embed_qubo(source_Q, embedding, tar-
get_adjacency)

Embed a QUBO onto a target graph.

unembed_sampleset(target_sampleset, . . . [, . . .]) Unembed a sample set.

dwave.embedding.embed_bqm

embed_bqm(source_bqm, embedding=None, target_adjacency=None, chain_strength=None,
smear_vartype=None)

Embed a binary quadratic model onto a target graph.

Parameters

• source_bqm (BinaryQuadraticModel) – Binary quadratic model to embed.

• embedding (dict/EmbeddedStructure) – Mapping from source graph to target graph
as a dict of form {s: {t, . . . }, . . . }, where s is a source-model variable and t is a target-model
variable. Alternately, an EmbeddedStructure object produced by, for example, Embedded-
Structure(target_adjacency.edges(), embedding). If embedding is a dict, target_adjacency
must be provided.

• target_adjacency (dict/networkx.Graph, optional) – Adjacency of the target
graph as a dict of form {t: Nt, . . . }, where t is a variable in the target graph and Nt is its set
of neighbours. This should be omitted if and only if embedding is an EmbeddedStructure
object.

• chain_strength (float/mapping/callable, optional) – Sets the coupling
strength between qubits representing variables that form a chain. Mappings should spec-
ify the required chain strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default, chain_strength is calculated with
uniform_torque_compensation().

• smear_vartype (Vartype, optional, default=None) – Determines whether the linear
bias of embedded variables is smeared (the specified value is evenly divided as biases of
a chain in the target graph) in SPIN or BINARY space. Defaults to the Vartype of
source_bqm.

Returns Target binary quadratic model.

Return type BinaryQuadraticModel

66 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#tuple
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph

dwave-system Documentation, Release 1.18.0

Examples

This example embeds a triangular binary quadratic model representing a 𝐾3 clique into a square target graph by
mapping variable c in the source to nodes 2 and 3 in the target.

>>> import networkx as nx
...
>>> target = nx.cycle_graph(4)
>>> # Binary quadratic model for a triangular source graph
>>> h = {'a': 0, 'b': 0, 'c': 0}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
>>> # Variable c is a chain
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed and show the chain strength
>>> target_bqm = dwave.embedding.embed_bqm(bqm, embedding, target)
>>> target_bqm.quadratic[(2, 3)]
-1.9996979771955565
>>> print(target_bqm.quadratic) # doctest: +SKIP
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.9996979771955565}

See also:

embed_ising(), embed_qubo()

dwave.embedding.embed_ising

embed_ising(source_h, source_J, embedding, target_adjacency, chain_strength=None)
Embed an Ising problem onto a target graph.

Parameters

• source_h (dict[variable, bias]/list[bias]) – Linear biases of the Ising
problem. If a list, the list’s indices are used as variable labels.

• source_J (dict[(variable, variable), bias]) – Quadratic biases of the
Ising problem.

• embedding (dict) – Mapping from source graph to target graph as a dict of form {s: {t,
. . . }, . . . }, where s is a source-model variable and t is a target-model variable.

• target_adjacency (dict/networkx.Graph) – Adjacency of the target graph as a
dict of form {t: Nt, . . . }, where t is a target-graph variable and Nt is its set of neighbours.

• chain_strength (float/mapping/callable, optional) – Sets the coupling
strength between qubits representing variables that form a chain. Mappings should spec-
ify the required chain strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default, chain_strength is calculated with
uniform_torque_compensation().

Returns

A 2-tuple:

dict[variable, bias]: Linear biases of the target Ising problem.

dict[(variable, variable), bias]: Quadratic biases of the target Ising problem.

Return type tuple

1.2. Reference Documentation 67

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#tuple

dwave-system Documentation, Release 1.18.0

Examples

This example embeds a triangular Ising problem representing a 𝐾3 clique into a square target graph by mapping
variable c in the source to nodes 2 and 3 in the target.

>>> import networkx as nx
...
>>> target = nx.cycle_graph(4)
>>> # Ising problem biases
>>> h = {'a': 0, 'b': 0, 'c': 0}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Variable c is a chain
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed and show the resulting biases
>>> th, tJ = dwave.embedding.embed_ising(h, J, embedding, target)
>>> th # doctest: +SKIP
{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0}
>>> tJ # doctest: +SKIP
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0}

See also:

embed_bqm(), embed_qubo()

dwave.embedding.embed_qubo

embed_qubo(source_Q, embedding, target_adjacency, chain_strength=None)
Embed a QUBO onto a target graph.

Parameters

• source_Q (dict[(variable, variable), bias]) – Coefficients of a quadratic
unconstrained binary optimization (QUBO) model.

• embedding (dict) – Mapping from source graph to target graph as a dict of form {s: {t,
. . . }, . . . }, where s is a source-model variable and t is a target-model variable.

• target_adjacency (dict/networkx.Graph) – Adjacency of the target graph as a
dict of form {t: Nt, . . . }, where t is a target-graph variable and Nt is its set of neighbours.

• chain_strength (float/mapping/callable, optional) – Sets the coupling
strength between qubits representing variables that form a chain. Mappings should spec-
ify the required chain strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default, chain_strength is calculated with
uniform_torque_compensation().

Returns Quadratic biases of the target QUBO.

Return type dict[(variable, variable), bias]

Examples

This example embeds a triangular QUBO representing a 𝐾3 clique into a square target graph by mapping
variable c in the source to nodes 2 and 3 in the target.

68 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 1.18.0

>>> import networkx as nx
...
>>> target = nx.cycle_graph(4)
>>> # QUBO
>>> Q = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Variable c is a chain
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed and show the resulting biases
>>> tQ = dwave.embedding.embed_qubo(Q, embedding, target)
>>> tQ # doctest: +SKIP
{(0, 1): 1.0,
(0, 3): 1.0,
(1, 2): 1.0,
(2, 3): -4.0,
(0, 0): 0.0,
(1, 1): 0.0,
(2, 2): 2.0,
(3, 3): 2.0}

See also:

embed_bqm(), embed_ising()

dwave.embedding.unembed_sampleset

unembed_sampleset(target_sampleset, embedding, source_bqm, chain_break_method=None,
chain_break_fraction=False, return_embedding=False)

Unembed a sample set.

Given samples from a target binary quadratic model (BQM), construct a sample set for a source BQM by
unembedding.

Parameters

• target_sampleset (dimod.SampleSet) – Sample set from the target BQM.

• embedding (dict) – Mapping from source graph to target graph as a dict of form {s: {t,
. . . }, . . . }, where s is a source variable and t is a target variable.

• source_bqm (BinaryQuadraticModel) – Source BQM.

• chain_break_method (function/list, optional) – Method or methods used
to resolve chain breaks. If multiple methods are given, the results are concatenated
and a new field called “chain_break_method” specifying the index of the method is ap-
pended to the sample set. Defaults to majority_vote(). See dwave.embedding.
chain_breaks.

• chain_break_fraction (bool, optional, default=False) – Add a
chain_break_fraction field to the unembedded dimod.SampleSet with the fraction of
chains broken before unembedding.

• return_embedding (bool, optional, default=False) – If True, the embed-
ding is added to dimod.SampleSet.info of the returned sample set. Note that if an
embedding key already exists in the sample set then it is overwritten.

Returns Sample set in the source BQM.

Return type SampleSet

1.2. Reference Documentation 69

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet
https://docs.python.org/3/library/functions.html#bool

dwave-system Documentation, Release 1.18.0

Examples

This example unembeds from a square target graph samples of a triangular source BQM.

>>> # Triangular binary quadratic model and an embedding
>>> J = {('a', 'b'): -1, ('b', 'c'): -1, ('a', 'c'): -1}
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, J)
>>> embedding = {'a': [0, 1], 'b': [2], 'c': [3]}
>>> # Samples from the embedded binary quadratic model
>>> samples = [{0: -1, 1: -1, 2: -1, 3: -1}, # [0, 1] is unbroken
... {0: -1, 1: +1, 2: +1, 3: +1}] # [0, 1] is broken
>>> energies = [-3, 1]
>>> embedded = dimod.SampleSet.from_samples(samples, dimod.SPIN, energies)
>>> # Unembed
>>> samples = dwave.embedding.unembed_sampleset(embedded, embedding, bqm)
>>> samples.record.sample # doctest: +SKIP
array([[-1, -1, -1],

[1, 1, 1]], dtype=int8)

Diagnostics

chain_break_frequency(samples_like, embed-
ding)

Determine the frequency of chain breaks in the given
samples.

diagnose_embedding(emb, source, target) Diagnose a minor embedding.
is_valid_embedding(emb, source, target) A simple (bool) diagnostic for minor embeddings.
verify_embedding(emb, source, target[, . . .]) A simple (exception-raising) diagnostic for minor em-

beddings.

dwave.embedding.chain_break_frequency

chain_break_frequency(samples_like, embedding)
Determine the frequency of chain breaks in the given samples.

Parameters

• samples_like (samples_like/dimod.SampleSet) – A collection of raw samples.
‘samples_like’ is an extension of NumPy’s array_like. See dimod.as_samples().

• embedding (dict) – Mapping from source graph to target graph as a dict of form {s: {t,
. . . }, . . . }, where s is a source-model variable and t is a target-model variable.

Returns Frequency of chain breaks as a dict in the form {s: f, . . . }, where s is a variable in the
source graph and float f the fraction of broken chains.

Return type dict

Examples

This example embeds a single source node, ‘a’, as a chain of two target nodes (0, 1) and uses
chain_break_frequency() to show that out of two synthetic samples, one ([-1, +1]) represents a broken
chain.

>>> import numpy as np
...

(continues on next page)

70 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 1.18.0

(continued from previous page)

>>> samples = np.array([[-1, +1], [+1, +1]])
>>> embedding = {'a': {0, 1}}
>>> print(dwave.embedding.chain_break_frequency(samples, embedding)['a'])
0.5

dwave.embedding.diagnose_embedding

diagnose_embedding(emb, source, target)
Diagnose a minor embedding.

Produces a generator that lists all issues with the embedding. User-friendly variants of this function are
is_valid_embedding(), which returns a bool, and verify_embedding(), which raises the first ob-
served error.

Parameters

• emb (dict) – A mapping of source nodes to arrays of target nodes as a dict of form {s: [t,
. . .], . . . }, where s is a source-graph variable and t is a target-graph variable.

• source (list/networkx.Graph) – Graph to be embedded as a NetworkX graph or a list
of edges.

• target (list/networkx.Graph) – Graph being embedded into as a NetworkX graph or
a list of edges.

Yields Errors yielded in the form ExceptionClass, arg1, arg2,. . . , where the arguments following the
class are used to construct the exception object, which are subclasses of EmbeddingError.

MissingChainError, snode: a source node label that does not occur as a key of
emb, or for which emb[snode] is empty.

ChainOverlapError, tnode, snode0, snode1: a target node which occurs in both
emb[snode0] and emb[snode1].

DisconnectedChainError, snode: a source node label whose chain is not a con-
nected subgraph of target.

InvalidNodeError, tnode, snode: a source node label and putative target node
label that is not a node of target.

MissingEdgeError, snode0, snode1: a pair of source node labels defining an edge
that is not present between their chains.

Examples

This example diagnoses an invalid embedding from a triangular source graph to a square target graph. A valid
embedding, such as emb = {0: [1], 1: [0], 2: [2, 3]}, yields no errors.

>>> from dwave.embedding import diagnose_embedding
>>> import networkx as nx
>>> source = nx.complete_graph(3)
>>> target = nx.cycle_graph(4)
>>> embedding = {0: [2], 1: [1, 'a'], 2: [2, 3]}
>>> diagnosis = diagnose_embedding(embedding, source, target)
>>> for problem in diagnosis: # doctest: +SKIP
... print(problem)

(continues on next page)

1.2. Reference Documentation 71

https://docs.python.org/3/library/stdtypes.html#dict
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph

dwave-system Documentation, Release 1.18.0

(continued from previous page)

(<class 'dwave.embedding.exceptions.InvalidNodeError'>, 1, 'a')
(<class 'dwave.embedding.exceptions.ChainOverlapError'>, 2, 2, 0)

dwave.embedding.is_valid_embedding

is_valid_embedding(emb, source, target)
A simple (bool) diagnostic for minor embeddings.

See diagnose_embedding() for a more detailed diagnostic and more information.

Parameters

• emb (dict) – A mapping of source nodes to arrays of target nodes as a dict of form {s: [t,
. . .], . . . }, where s is a source-graph variable and t is a target-graph variable.

• source (graph or edgelist) – Graph to be embedded.

• target (graph or edgelist) – Graph being embedded into.

Returns True if emb is valid.

Return type bool

dwave.embedding.verify_embedding

verify_embedding(emb, source, target, ignore_errors=())
A simple (exception-raising) diagnostic for minor embeddings.

See diagnose_embedding() for a more detailed diagnostic and more information.

Parameters

• emb (dict) – A mapping of source nodes to arrays of target nodes as a dict of form {s: [t,
. . .], . . . }, where s is a source-graph variable and t is a target-graph variable.

• source (graph or edgelist) – Graph to be embedded

• target (graph or edgelist) – Graph being embedded into

Raises EmbeddingError – A catch-all class for the following errors:

MissingChainError: A key is missing from emb or the associated chain is empty.

ChainOverlapError: Two chains contain the same target node.

DisconnectedChainError: A chain is disconnected.

InvalidNodeError: A chain contains a node label not found in target.

MissingEdgeError: A source edge is not represented by any target edges.

Returns True if no exception is raised.

Return type bool

Chain Strength

Utility functions for calculating chain strength.

72 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

dwave-system Documentation, Release 1.18.0

Examples

This example uses uniform_torque_compensation(), given a prefactor of 2, to calculate a chain strength
that EmbeddingComposite then uses.

>>> from functools import partial
>>> from dwave.system import EmbeddingComposite, DWaveSampler
>>> from dwave.embedding.chain_strength import uniform_torque_compensation
...
>>> Q = {(0,0): 1, (1,1): 1, (2,3): 2, (1,2): -2, (0,3): -2}
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> # partial() can be used when the BQM or embedding is not accessible
>>> chain_strength = partial(uniform_torque_compensation, prefactor=2)
>>> sampleset = sampler.sample_qubo(Q, chain_strength=chain_strength, return_
→˓embedding=True)
>>> sampleset.info['embedding_context']['chain_strength']
1.224744871391589

chain_strength.uniform_torque_compensation(bqm)Chain strength that attempts to compensate for torque
that would break the chain.

chain_strength.scaled(bqm[, embedding,
. . .])

Chain strength that is scaled to the problem bias range.

dwave.embedding.chain_strength.uniform_torque_compensation

uniform_torque_compensation(bqm, embedding=None, prefactor=1.414)
Chain strength that attempts to compensate for torque that would break the chain.

The RMS of the problem’s quadratic biases is used for calculation.

Parameters

• bqm (BinaryQuadraticModel) – A binary quadratic model.

• embedding (dict/EmbeddedStructure, default=None) – Included to satisfy the
chain_strength callable specifications for embed_bqm.

• prefactor (float, optional, default=1.414) – Prefactor used for scaling.
For non-pathological problems, the recommended range of prefactors to try is [0.5, 2].

Returns The chain strength, or 1 if chain strength is not applicable.

Return type float

dwave.embedding.chain_strength.scaled

scaled(bqm, embedding=None, prefactor=1.0)
Chain strength that is scaled to the problem bias range.

Parameters

• bqm (BinaryQuadraticModel) – A binary quadratic model.

• embedding (dict/EmbeddedStructure, default=None) – Included to satisfy the
chain_strength callable specifications for embed_bqm.

• prefactor (float, optional, default=1.0) – Prefactor used for scaling.

1.2. Reference Documentation 73

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

dwave-system Documentation, Release 1.18.0

Returns The chain strength, or 1 if chain strength is not applicable.

Return type float

Chain-Break Resolution

Unembedding samples with broken chains.

Generators

chain_breaks.discard(samples, chains) Discard broken chains.
chain_breaks.majority_vote(samples,
chains)

Unembed samples using the most common value for
broken chains.

chain_breaks.weighted_random(samples,
chains)

Unembed samples using weighed random choice for
broken chains.

dwave.embedding.chain_breaks.discard

discard(samples, chains)
Discard broken chains.

Parameters

• samples (samples_like) – A collection of samples. samples_like is an extension of
NumPy’s array_like. See dimod.as_samples().

• chains (list[array_like]) – List of chains, where each chain is an array_like col-
lection of the variables in the same order as their represention in the given samples.

Returns

A 2-tuple containing:

numpy.ndarray: Unembedded samples as an array of dtype ‘int8’. Broken chains
are discarded.

numpy.ndarray: Indicies of rows with unbroken chains.

Return type tuple

Examples

This example unembeds two samples that chains nodes 0 and 1 to represent a single source node. The first
sample has an unbroken chain, the second a broken chain.

>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2,)]
>>> samples = np.array([[1, 1, 0], [1, 0, 0]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.discard(samples, chains)
>>> unembedded
array([[1, 0]], dtype=int8)
>>> print(idx)
[0]

74 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

dwave-system Documentation, Release 1.18.0

dwave.embedding.chain_breaks.majority_vote

majority_vote(samples, chains)
Unembed samples using the most common value for broken chains.

Parameters

• samples (samples_like) – A collection of samples. samples_like is an extension of
NumPy’s array_like. See dimod.as_samples().

• chains (list[array_like]) – List of chains, where each chain is an array_like col-
lection of the variables in the same order as their represention in the given samples.

Returns

A 2-tuple containing:

numpy.ndarray: Unembedded samples as an nS-by-nC array of dtype ‘int8’, where
nC is the number of chains and nS the number of samples. Broken chains are resolved
by setting the sample value to that of most the chain’s elements or, for chains without a
majority, an arbitrary value.

numpy.ndarray: Indicies of the samples. Equivalent to np.arange(nS) because
all samples are kept and none added.

Return type tuple

Examples

This example unembeds samples from a target graph that chains nodes 0 and 1 to represent one source node and
nodes 2, 3, and 4 to represent another. Both samples have one broken chain, with different majority values.

>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 1, 0, 0, 1], [1, 1, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.majority_vote(samples, chains)
>>> print(unembedded)
[[1 0]
[1 1]]

>>> print(idx)
[0 1]

dwave.embedding.chain_breaks.weighted_random

weighted_random(samples, chains)
Unembed samples using weighed random choice for broken chains.

Parameters

• samples (samples_like) – A collection of samples. samples_like is an extension of
NumPy’s array_like. See dimod.as_samples().

• chains (list[array_like]) – List of chains, where each chain is an array_like col-
lection of the variables in the same order as their represention in the given samples.

1.2. Reference Documentation 75

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples
https://docs.python.org/3/library/stdtypes.html#list

dwave-system Documentation, Release 1.18.0

Returns

A 2-tuple containing:

numpy.ndarray: Unembedded samples as an nS-by-nC array of dtype ‘int8’, where
nC is the number of chains and nS the number of samples. Broken chains are resolved
by setting the sample value to a random value weighted by frequency of the value in the
chain.

numpy.ndarray: Indicies of the samples. Equivalent to np.arange(nS) because
all samples are kept and no samples are added.

Return type tuple

Examples

This example unembeds samples from a target graph that chains nodes 0 and 1 to represent one source node and
nodes 2, 3, and 4 to represent another. The sample has broken chains for both source nodes.

>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 0, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.weighted_random(samples, chains) #
→˓doctest: +SKIP
>>> unembedded # doctest: +SKIP
array([[1, 1]], dtype=int8)
>>> idx # doctest: +SKIP
array([0, 1])

Callable Objects

chain_breaks.MinimizeEnergy(bqm, embed-
ding)

Unembed samples by minimizing local energy for bro-
ken chains.

dwave.embedding.chain_breaks.MinimizeEnergy

class MinimizeEnergy(bqm, embedding)
Unembed samples by minimizing local energy for broken chains.

Parameters

• bqm (BinaryQuadraticModel) – Binary quadratic model associated with the source
graph.

• embedding (dict) – Mapping from source graph to target graph as a dict of form {s: [t,
. . .], . . . }, where s is a source-model variable and t is a target-model variable.

Examples

This example embeds from a triangular graph to a square graph, chaining target-nodes 2 and 3 to represent
source-node c, and unembeds minimizing the energy for the samples. The first two sample have unbroken
chains, the second two have broken chains.

76 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 1.18.0

>>> import dimod
>>> import numpy as np
...
>>> h = {'a': 0, 'b': 0, 'c': 0}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
>>> embedding = {'a': [0], 'b': [1], 'c': [2, 3]}
>>> cbm = dwave.embedding.MinimizeEnergy(bqm, embedding)
>>> samples = np.array([[+1, -1, +1, +1],
... [-1, -1, -1, -1],
... [-1, -1, +1, -1],
... [+1, +1, -1, +1]], dtype=np.int8)
>>> chains = [embedding['a'], embedding['b'], embedding['c']]
>>> unembedded, idx = cbm(samples, chains)
>>> unembedded
array([[1, -1, 1],

[-1, -1, -1],
[-1, -1, 1],
[1, 1, -1]], dtype=int8)

>>> idx
array([0, 1, 2, 3])

__init__(bqm, embedding)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(bqm, embedding) Initialize self.

Exceptions

exceptions.EmbeddingError Base class for all embedding exceptions.
exceptions.MissingChainError(snode) Raised if a node in the source graph has no associated

chain.
exceptions.ChainOverlapError(tnode,
snode0, . . .)

Raised if two source nodes have an overlapping chain.

exceptions.DisconnectedChainError(snode) Raised if a chain is not connected in the target graph.
exceptions.InvalidNodeError(snode, tnode) Raised if a chain contains a node not in the target graph.
exceptions.MissingEdgeError(snode0,
snode1)

Raised when two source nodes sharing an edge to not
have a corresponding edge between their chains.

dwave.embedding.exceptions.EmbeddingError

exception EmbeddingError
Base class for all embedding exceptions.

dwave.embedding.exceptions.MissingChainError

exception MissingChainError(snode)
Raised if a node in the source graph has no associated chain.

1.2. Reference Documentation 77

dwave-system Documentation, Release 1.18.0

Parameters snode – The source node with no associated chain.

dwave.embedding.exceptions.ChainOverlapError

exception ChainOverlapError(tnode, snode0, snode1)
Raised if two source nodes have an overlapping chain.

Parameters

• tnode – Location where the chains overlap.

• snode0 – First source node with overlapping chain.

• snode1 – Second source node with overlapping chain.

dwave.embedding.exceptions.DisconnectedChainError

exception DisconnectedChainError(snode)
Raised if a chain is not connected in the target graph.

Parameters snode – The source node associated with the broken chain.

dwave.embedding.exceptions.InvalidNodeError

exception InvalidNodeError(snode, tnode)
Raised if a chain contains a node not in the target graph.

Parameters

• snode – The source node associated with the chain.

• tnode – The node in the chain not in the target graph.

dwave.embedding.exceptions.MissingEdgeError

exception MissingEdgeError(snode0, snode1)
Raised when two source nodes sharing an edge to not have a corresponding edge between their chains.

Parameters

• snode0 – First source node.

• snode1 – Second source node.

Classes

class EmbeddedStructure(target_edges, embedding)
Processes an embedding and a target graph to collect target edges into those within individual chains, and those
that connect chains. This is used elsewhere to embed binary quadratic models into the target graph.

Parameters

• target_edges (iterable[edge]) – An iterable of edges in the target graph. Each
edge should be an iterable of 2 hashable objects.

78 Chapter 1. Documentation

dwave-system Documentation, Release 1.18.0

• embedding (dict) – Mapping from source graph to target graph as a dict of form {s: {t,
. . . }, . . . }, where s is a source-model variable and t is a target-model variable.

This class is a dict, and acts as an immutable duplicate of embedding.

1.2.4 Utilities

Utility functions.

common_working_graph(graph0, graph1) Creates a graph using the common nodes and edges of
two given graphs.

dwave.system.utilities.common_working_graph

common_working_graph(graph0, graph1)
Creates a graph using the common nodes and edges of two given graphs.

This function finds the edges and nodes with common labels. Note that this not the same as finding the greatest
common subgraph with isomorphisms.

Parameters

• graph0 – (dict[dict]/Graph) A NetworkX graph or a dictionary of dictionaries adjacency
representation.

• graph1 – (dict[dict]/Graph) A NetworkX graph or a dictionary of dictionaries adjacency
representation.

Returns A graph with the nodes and edges common to both input graphs.

Return type Graph

Examples

This example creates a graph that represents a part of a particular Advantage quantum computer’s working
graph.

>>> import dwave_networkx as dnx
>>> from dwave.system import DWaveSampler, common_working_graph
...
>>> sampler = DWaveSampler(solver={'topology__type': 'pegasus'})
>>> P3 = dnx.pegasus_graph(3)
>>> p3_working_graph = common_working_graph(P3, sampler.adjacency)

coupling_groups(hardware_graph) Generate groups of couplers for which a limit on total
coupling applies for each group.

dwave.system.coupling_groups.coupling_groups

coupling_groups(hardware_graph)
Generate groups of couplers for which a limit on total coupling applies for each group.

Parameters hardware_graph (networkx.Graph) – The hardware graph of a QPU. Note that
only Zephyr graphs have coupling groups.

1.2. Reference Documentation 79

https://docs.python.org/3/library/stdtypes.html#dict
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph

dwave-system Documentation, Release 1.18.0

Yields Lists of tuples, where each list is a group of couplers in hardware_graph.

Temperature Utilities

The following effective temperature estimators are provided:

• Maximum pseudo-likelihood is an efficient estimator for the temperature describing a classical Boltzmann
distribution P(x) = exp(-H(x)/T)/Z(T) given samples from that distribution, where H(x) is the classical en-
ergy function. The following links describe features of the estimator in application to equilibrium distribu-
tion drawn from binary quadratic models and non-equilibrium distributions generated by annealing: https:
//www.jstor.org/stable/25464568 https://doi.org/10.3389/fict.2016.00023

• An effective temperature can be inferred assuming freeze-out during the anneal at s=t/t_a, an annealing schedule,
and a device physical temperature. Necessary device-specific properties are published for online solvers: https:
//docs.dwavesys.com/docs/latest/doc_physical_properties.html

effective_field(bqm[, samples, . . .]) Returns the effective field for all variables and all sam-
ples.

maximum_pseudolikelihood_temperature([bqm,
. . .])

Returns a sampling-based temperature estimate.

freezeout_effective_temperature(freezeout_B,
. . .)

Provides an effective temperature as a function of
freezeout information.

fast_effective_temperature([sampler, . . .]) Provides an estimate to the effective temperature, 𝑇 , of
a sampler.

dwave.system.temperatures.effective_field

effective_field(bqm, samples=None, current_state_energy=False) -> (<class ’numpy.ndarray’>,
<class ’list’>)

Returns the effective field for all variables and all samples.

The effective field with current_state_energy = False is the energy attributable to setting a variable
to value 1, conditioned on fixed values for all neighboring variables (relative to exclusion of the variable, and
associated energy terms, from the problem).

The effective field with current_state_energy = True is the energy gained by flipping the variable
state against its current value (from say -1 to 1 in the Ising case, or 0 to 1 in the QUBO case). A positive value
indicates that the energy can be decreased by flipping the variable, hence the variable is in a locally excited state.
If all values are negative (positive) within a sample, that sample is a local minima (maxima).

Any BQM can be converted to an Ising model with

𝐻(𝑠) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡+
∑︁
𝑖

ℎ𝑖𝑠𝑖 + 0.5
∑︁
𝑖,𝑗

𝐽𝑖,𝑗𝑠𝑖𝑠𝑗

with unique values of 𝐽 (symmetric) and ℎ. The sample dependent effect field on variable i, 𝑓𝑖(𝑠), is then
defined

if current_state_energy == False:

𝑓𝑖(𝑠) = ℎ𝑖 +
∑︁
𝑗

𝐽𝑖,𝑗𝑠𝑗

else:

𝑓𝑖(𝑠) = 2𝑠𝑖[ℎ𝑖 +
∑︁
𝑗

𝐽𝑖,𝑗𝑠𝑗]

80 Chapter 1. Documentation

https://www.jstor.org/stable/25464568
https://www.jstor.org/stable/25464568
https://doi.org/10.3389/fict.2016.00023
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html

dwave-system Documentation, Release 1.18.0

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model.

• samples (samples_like or SampleSet,optional) – A collection of raw samples. sam-
ples_like is an extension of NumPy’s array like structure. See dimod.sampleset.
as_samples(). By default, a single sample with all +1 assignments is used.

• current_state_energy (bool, optional, default=False) – By default,
returns the effective field (the energy contribution associated to a state assignment of 1).
When set to True, returns the energy lost in flipping the value of each variable. Note cur-
rent_state_energy is typically negative for positive temperature samples, meaning energy is
not decreased by flipping the spin against its current assignment.

Returns A Tuple of the effective_fields, and the variable labels. Effective fields are returned as a
numpy.ndarray. Rows index samples, and columns index variables in the order returned by
variable labels.

Return type samples_like

Examples

For a ferromagnetic Ising chain 𝐻 = −0.5
∑︀

𝑖 𝑠𝑖𝑠𝑖+1 and for a ground state sample (all +1), the energy lost
when flipping any spin is equal to the number of couplers frustrated: -2 in the center of the chain (variables
1,2,..,N-2), and -1 at the end (variables 0 and N-1).

>>> import dimod
>>> import numpy as np
>>> from dwave.system.temperatures import effective_field
>>> N = 5
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {(i,i+1) : -0.5 for i in
→˓range(N-1)})
>>> var_labels = list(range(N))
>>> samples = (np.ones(shape=(1,N)), var_labels)
>>> E = effective_field(bqm,samples,current_state_energy=True)
>>> print('Cost to flip spin against current assignment', E)
Cost to flip spin against current assignment (array([[-1., -2., -2., -2., -1.]]),
→˓[0, 1, 2, 3, 4])

dwave.system.temperatures.maximum_pseudolikelihood_temperature

maximum_pseudolikelihood_temperature(bqm=None, sampleset=None, site_energy=None,
num_bootstrap_samples=0, seed=None,
T_guess=None, optimize_method=’bisect’,
T_bracket=(0.001, 1000)) → Tuple[float,
numpy.ndarray]

Returns a sampling-based temperature estimate.

The temperature T parameterizes the Boltzmann distribution as 𝑃 (𝑥) = exp(−𝐻(𝑥)/𝑇)/𝑍(𝑇), where 𝑃 (𝑥)
is a probability over a state space, 𝐻(𝑥) is the energy function (BQM) and 𝑍(𝑇) is a normalization. Given
a sample set (𝑆), a temperature estimate establishes the temperature that is most likely to have produced the
sample set. An effective temperature can be derived from a sample set by considering the rate of excitations
only. A maximum-pseudo-likelihood (MPL) estimator considers local excitations only, which are sufficient to
establish a temperature efficiently (in compute time and number of samples). If the BQM consists of uncoupled
variables then the estimator is equivalent to a maximum likelihood estimator.

1.2. Reference Documentation 81

https://docs.python.org/3/library/functions.html#bool

dwave-system Documentation, Release 1.18.0

The effective MPL temperature is defined by the solution T to

0 =
∑︁
𝑖

∑︁
𝑠∈𝑆

𝑓𝑖(𝑠) exp(𝑓𝑖(𝑠)/𝑇),

where f is the energy lost in flipping spin i against its current assignment (the effective field).

The problem is a convex root solving problem, and is solved with SciPy optimize.

If the distribution is not Boltzmann with respect to the BQM provided, as may be the case for heuristic samplers
(such as annealers), the temperature estimate can be interpreted as characterizing only a rate of local excitations.
In the case of sample sets obtained from D-Wave annealing quantum computers the temperature can be identified
with a physical temperature via a late-anneal freeze-out phenomena.

Parameters

• bqm (dimod.BinaryQuadraticModel, optional) – Binary quadratic model describ-
ing sample distribution. If bqm and site_energy are both None, then by default 100
samples are drawn using DWaveSampler, with bqm defaulted as described.

• sampleset (dimod.SampleSet, optional) – A set of samples, assumed to be fairly
sampled from a Boltzmann distribution characterized by bqm.

• site_energy (samples_like, optional) – A Tuple of effective fields and site
labels. Derived from the bqm and sampleset if not provided.

• num_bootstrap_samples (int, optional, default=0) – Number of boot-
strap estimators to calculate.

• seed (int, optional) – Seeds the bootstrap method (if provided) allowing repro-
ducibility of the estimators.

• T_guess (float, optional) – User approximation to the effective temperature, must
be a positive scalar value. Seeding the root-search method can enable faster convergence.
By default, T_guess is ignored if it falls outside the range of T_bracket.

• optimize_method (str,optional,default='bisect') – SciPy method used
for optimization. Options are ‘bisect’ and None (the default SciPy optimize method).

• T_bracket (list or Tuple of 2 floats, optional, default=(0.
001,1000)) – If excitations are absent, temperature is defined as zero, otherwise this
defines the range of Temperatures over which to attempt a fit when using the ‘bisect’
optimize_method (the default).

Returns

(T_estimate,T_bootstrap_estimates)

T_estimate: a temperature estimate T_bootstrap_estimates: a numpy array of bootstrap estima-
tors

Return type Tuple of float and NumPy array

Examples

Draw samples from a D-Wave Quantum Computer for a large spin-glass problem (random couplers J, zero
external field h). Establish a temperature estimate by maximum pseudo-likelihood.

Note that due to the complicated freeze-out properties of hard models, such as large scale spin-glasses, deviation
from a classical Boltzmann distribution is anticipated. Nevertheless, the T estimate can always be interpreted as
an estimator of local excitations rates. For example T will be 0 if only local minima are returned (even if some
of the local minima are not ground states).

82 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

dwave-system Documentation, Release 1.18.0

>>> import dimod
>>> from dwave.system.temperatures import maximum_pseudolikelihood_temperature
>>> from dwave.system import DWaveSampler
>>> from random import random
>>> sampler = DWaveSampler()
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {e : 1-2*random() for e in
→˓sampler.edgelist})
>>> sampleset = sampler.sample(bqm, num_reads=100, auto_scale=False)
>>> T,T_bootstrap = maximum_pseudolikelihood_temperature(bqm,sampleset)
>>> print('Effective temperature ',T) # doctest: +SKIP
Effective temperature 0.24066488780293813

See also:

https://doi.org/10.3389/fict.2016.00023

https://www.jstor.org/stable/25464568

dwave.system.temperatures.freezeout_effective_temperature

freezeout_effective_temperature(freezeout_B, temperature, units_B=’GHz’, units_T=’mK’) →
float

Provides an effective temperature as a function of freezeout information.

See https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html for a complete summary of D-Wave annealing
quantum computer operation.

A D-Wave annealing quantum computer is assumed to implement a Hamiltonian 𝐻(𝑠) = 𝐵(𝑠)/2𝐻𝑃 −
𝐴(𝑠)/2𝐻𝐷, where: 𝐻𝑃 is the unitless diagonal problem Hamiltonian, 𝐻𝐷 is the unitless driver Hamiltonian,
𝐵(𝑠) is the problem energy scale; A(s) is the driver energy scale, amd 𝑠 is the normalized anneal time 𝑠 = 𝑡/𝑡𝑎
(in [0,1]). Diagonal elements of 𝐻𝑃 , indexed by the spin state 𝑥, are equal to the energy of a classical Ising spin
system

𝐸𝐼𝑠𝑖𝑛𝑔(𝑥) =
∑︁
𝑖

ℎ𝑖𝑥𝑖 +
∑︁
𝑖>𝑗

𝐽𝑖,𝑗𝑥𝑖𝑥𝑗

If annealing achieves a thermally equilibrated distribution over decohered states at large 𝑠 where 𝐴(𝑠) ≪ 𝐵(𝑠),
and dynamics stop abruptly at 𝑠 = 𝑠*, the distribution of returned samples is well described by a Boltzmann
distribution:

𝑃 (𝑥) = exp(−𝐵(𝑠*)𝑅𝐸𝐼𝑠𝑖𝑛𝑔(𝑥)/2𝑘𝐵𝑇)

where T is the physical temperature, and 𝑘𝐵 is the Boltzmann constant. R is a Hamiltonain rescaling factor, if a
QPU is operated with auto_scale=False, then R=1. The function calculates the unitless effective temperature as
𝑇𝑒𝑓𝑓 = 2𝑘𝐵𝑇/𝐵(𝑠*).

Device temperature 𝑇 , annealing schedules {𝐴(𝑠), 𝐵(𝑠)} and single-qubit freeze-out (𝑠*, for simple uncoupled
Hamltonians) are reported device properties: https://docs.dwavesys.com/docs/latest/doc_physical_properties.
html These values (typically specified in mK and GHz) allows the calculation of an effective temperature for
simple Hamiltonians submitted to D-Wave quantum computers. Complicated problems exploiting embeddings,
or with many coupled variables, may freeze out at different values of s or piecemeal). Large problems may have
slow dynamics at small values of s, so 𝐴(𝑠) cannot be ignored as a contributing factor to the distribution.

Note that for QPU solvers this temperature estimate applies to problems submitted with no additional scaling
factors (sampling with auto_scale = False). If auto_scale=True (default) additional scaling factors
must be accounted for.

Parameters

1.2. Reference Documentation 83

https://doi.org/10.3389/fict.2016.00023
https://www.jstor.org/stable/25464568
https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html

dwave-system Documentation, Release 1.18.0

• freezeout_B (float) – 𝐵(𝑠*), the problem Hamiltonian energy scale at freeze-out.

• temperature (float) – 𝑇 , the physical temperature of the quantum computer.

• units_B (string, optional, 'GHz') – Units in which freezeout_B is speci-
fied. Allowed values: ‘GHz’ (Giga-Hertz) and ‘J’ (Joules).

• units_T (string, optional, 'mK') – Units in which the temperature is spec-
ified. Allowed values: ‘mK’ (milli-Kelvin) and ‘K’ (Kelvin).

Returns The effective (unitless) temperature.

Return type float

Examples

This example uses the published parameters <https://docs.dwavesys.com/docs/latest/doc_physical_properties.
html> for the Advantage_system4.1 QPU solver as of November 22nd 2021: 𝐵(𝑠 = 0.612) = 3.91 GHz ,
:math:‘T = 15.4‘mK.

>>> from dwave.system.temperatures import freezeout_effective_temperature
>>> T = freezeout_effective_temperature(freezeout_B = 3.91, temperature = 15.4)
>>> print('Effective temperature at single qubit freeze-out is', T) # doctest:
→˓+ELLIPSIS
Effective temperature at single qubit freeze-out is 0.164...

See also:

The function fast_effective_temperature estimates the temperature for single-qubit Hamiltonians, in
approximate agreement with estimates by this function at reported single-qubit freeze-out values 𝑠* and device
physical parameters.

dwave.system.temperatures.fast_effective_temperature

fast_effective_temperature(sampler=None, num_reads=None, seed=None,
h_range=(-0.1639344262295082, 0.1639344262295082),
sampler_params=None, optimize_method=None,
num_bootstrap_samples=0)→ Tuple[numpy.float64, numpy.float64]

Provides an estimate to the effective temperature, 𝑇 , of a sampler.

This function submits a set of single-qubit problems to a sampler and uses the rate of excitations to infer a
maximum-likelihood estimate of temperature.

Parameters

• sampler (dimod.Sampler, optional, default=DWaveSampler) – A dimod sampler.

• num_reads (int, optional) – Number of reads to use. Default is 100 if not specified
in sampler_params.

• seed (int, optional) – Seeds the problem generation process. Allowing repro-
ducibility from pseudo-random samplers.

• h_range (float, optional, default = [-1/6.1,1/6.1]) – Determines
the range of external fields probed for temperature inference. Default is based on a D-Wave
Advantage processor, where single-qubit freeze-out implies an effective temperature of 6.1
(see freezeout_effective_temperature). The range should be chosen inversely
proportional to the anticipated temperature for statistical efficiency, and to accomodate pre-
cision and other nonidealities such as precision limitations.

84 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

dwave-system Documentation, Release 1.18.0

• sampler_params (dict, optional) – Any additional non-defaulted sampler pa-
rameterization. If num_reads is a key, must be compatible with num_reads argument.

• optimize_method (str, optional) – Optimize method used by SciPy
root_scalar method. The default method works well under default operation,
‘bisect’ can be numerically more stable when operated without defaults.

• num_bootstrap_samples (int, optional, default=0) – Number of boot-
strap samples to use for estimation of the standard error. By default no bootstrapping is
performed and the standard error is defaulted to 0.

Returns The effective temperature describing single qubit problems in an external field, and a stan-
dard error (+/- 1 sigma). By default the confidence interval is set as 0.

Return type Tuple[float, float]

See also:

https://doi.org/10.3389/fict.2016.00023

https://www.jstor.org/stable/25464568

Examples

Draw samples from a DWaveSampler, and establish the temperature

>>> from dwave.system.temperatures import fast_effective_temperature
>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> T, _ = fast_effective_temperature(sampler)
>>> print('Effective temperature at freeze-out is',T) # doctest: +SKIP
0.21685104745347336

See also:

The function freezeout_effective_temperature may be used in combination with published device
values to estimate single-qubit freeze-out, in approximate agreement with empirical estimates of this function.

https://doi.org/10.3389/fict.2016.00023

https://www.jstor.org/stable/25464568

1.2.5 Warnings

Settings for raising warnings may be configured by tools such as composites or dwave-inspector.

This example configures warnings for an instance of the EmbeddingComposite() class used on a sampler struc-
tured to represent variable a with a long chain.

>>> import networkx as nx
>>> import dimod
>>> import greedy
...
>>> G = nx.Graph()
>>> G.add_edges_from([(n, n + 1) for n in range(10)])
>>> sampler = dimod.StructureComposite(greedy.SteepestDescentSampler(), G.nodes, G.
→˓edges)
>>> sampleset = EmbeddingComposite(sampler).sample_ising({}, {("a", "b"): -1},
... return_embedding=True,

(continues on next page)

1.2. Reference Documentation 85

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://doi.org/10.3389/fict.2016.00023
https://www.jstor.org/stable/25464568
https://doi.org/10.3389/fict.2016.00023
https://www.jstor.org/stable/25464568
https://docs.ocean.dwavesys.com/en/stable/docs_inspector/sdk_index.html

dwave-system Documentation, Release 1.18.0

(continued from previous page)

... embedding_parameters={"fixed_chains": {"a": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}},

... warnings=dwave.system.warnings.SAVE)
>>> "warnings" in sampleset.info
True

class ChainBreakWarning
Raised if a chain’s qubits are in different states for lowest-energy samples.

class ChainLengthWarning
Raised if the number of qubits forming a chain is high.

class ChainStrengthWarning
Base category for warnings about the embedding chain strength.

class EnergyScaleWarning
Base category for warnings about the relative bias strengths.

class TooFewSamplesWarning
Raised if lowest-energy samples are a small fraction of the total samples.

class WarningAction
Settings for raising warnings.

An enum with values IGNORE and SAVE.

class WarningHandler(action=None)

1.3 Installation

Installation from PyPI:

pip install dwave-system

Installation from PyPI with drivers:

Note: Prior to v0.3.0, running pip install dwave-system installed a driver dependency called
dwave-drivers (previously also called dwave-system-tuning). This dependency has a restricted license
and has been made optional as of v0.3.0, but is highly recommended. To view the license details:

from dwave.drivers import __license__
print(__license__)

To install with optional dependencies:

pip install dwave-system[drivers] --extra-index-url https://pypi.dwavesys.com/simple

Installation from source:

pip install -r requirements.txt
python setup.py install

Note that installing from source installs dwave-drivers. To uninstall the proprietary components:

pip uninstall dwave-drivers

86 Chapter 1. Documentation

dwave-system Documentation, Release 1.18.0

1.4 License

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of
this definition, “control” means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted
by this License.

“Source” form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or trans-
lation of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made avail-
able under the License, as indicated by a copyright notice that is included in or attached
to the work (an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations, elabora-
tions, or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

“Contribution” shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or
by an individual or Legal Entity authorized to submit on behalf of the copyright owner.
For the purposes of this definition, “submitted” means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not
limited to communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Con-
tributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly

1.4. License 87

http://www.apache.org/licenses/

dwave-system Documentation, Release 1.18.0

display, publicly perform, sublicense, and distribute the Work and such Derivative Works
in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contrib-
utor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have made, use, offer
to sell, sell, import, and otherwise transfer the Work, where such license applies only to
those patent claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work to which
such Contribution(s) was submitted. If You institute patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contri-
bution incorporated within the Work constitutes direct or contributory patent infringement,
then any patent licenses granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and

(b) You must cause any modified files to carry prominent notices stating that You changed
the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form of the
Work, excluding those notices that do not pertain to any part of the Derivative Works;
and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Deriva-
tive Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to
any part of the Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within the Source form
or documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do
not modify the License. You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide ad-
ditional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use, re-
production, and distribution of the Work otherwise complies with the conditions stated in
this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution in-
tentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions. Notwith-
standing the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the

88 Chapter 1. Documentation

dwave-system Documentation, Release 1.18.0

NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-
censor provides the Work (and each Contributor provides its Contributions) on an “AS
IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex-
press or implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or re-
distributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support, war-
ranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice,
with the fields enclosed by brackets “[]” replaced with your own identifying infor-
mation. (Don’t include the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a file or class name and
description of purpose be included on the same “printed page” as the copyright notice
for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the Li-
cense is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

1.4. License 89

http://www.apache.org/licenses/LICENSE-2.0

dwave-system Documentation, Release 1.18.0

90 Chapter 1. Documentation

Python Module Index

d
dwave.embedding.chain_breaks, 74
dwave.embedding.chain_strength, 72
dwave.system.composites.embedding, 29
dwave.system.temperatures, 80
dwave.system.utilities, 79

91

dwave-system Documentation, Release 1.18.0

92 Python Module Index

Index

Symbols
__init__() (MinimizeEnergy method), 77

A
adjacency (DWaveSampler attribute), 7
adjacency (FixedEmbeddingComposite attribute), 36
adjacency (LazyFixedEmbeddingComposite at-

tribute), 40
adjacency (TilingComposite attribute), 44
adjacency (VirtualGraphComposite attribute), 48
AutoEmbeddingComposite (class in

dwave.system.composites), 29

C
chain_break_frequency() (in module

dwave.embedding), 70
ChainBreakWarning (class in

dwave.system.warnings), 86
ChainLengthWarning (class in

dwave.system.warnings), 86
ChainOverlapError, 78
ChainStrengthWarning (class in

dwave.system.warnings), 86
child (AutoEmbeddingComposite attribute), 30
child (CutOffComposite attribute), 24
child (EmbeddingComposite attribute), 33
child (FixedEmbeddingComposite attribute), 37
child (PolyCutOffComposite attribute), 27
child (ReverseAdvanceComposite attribute), 55
child (ReverseBatchStatesComposite attribute), 51
child (TilingComposite attribute), 44
child (VirtualGraphComposite attribute), 48
children (CutOffComposite attribute), 25
children (FixedEmbeddingComposite attribute), 37
children (PolyCutOffComposite attribute), 27
children (ReverseAdvanceComposite attribute), 55
children (ReverseBatchStatesComposite attribute), 51
children (TilingComposite attribute), 44
children (VirtualGraphComposite attribute), 48

common_working_graph() (in module
dwave.system.utilities), 79

coupling_groups() (in module
dwave.system.coupling_groups), 79

CutOffComposite (class in
dwave.system.composites), 23

D
default_solver (LeapHybridDQMSampler at-

tribute), 21
default_solver (LeapHybridSampler attribute), 16
diagnose_embedding() (in module

dwave.embedding), 71
discard() (in module

dwave.embedding.chain_breaks), 74
DisconnectedChainError, 78
dwave.embedding.chain_breaks (module), 74
dwave.embedding.chain_strength (module),

72
dwave.system.composites.embedding (mod-

ule), 29
dwave.system.temperatures (module), 80
dwave.system.utilities (module), 79
DWaveCliqueSampler (class in

dwave.system.samplers), 10
DWaveSampler (class in dwave.system.samplers), 4

E
edgelist (DWaveSampler attribute), 7
edgelist (FixedEmbeddingComposite attribute), 37
edgelist (LazyFixedEmbeddingComposite attribute),

40
edgelist (TilingComposite attribute), 44
edgelist (VirtualGraphComposite attribute), 49
effective_field() (in module

dwave.system.temperatures), 80
embed_bqm() (in module dwave.embedding), 66
embed_ising() (in module dwave.embedding), 67
embed_qubo() (in module dwave.embedding), 68

93

dwave-system Documentation, Release 1.18.0

EmbeddedStructure (class in dwave.embedding), 78
EmbeddingComposite (class in

dwave.system.composites), 32
EmbeddingError, 77
embeddings (TilingComposite attribute), 44
EnergyScaleWarning (class in

dwave.system.warnings), 86

F
fast_effective_temperature() (in module

dwave.system.temperatures), 84
find_biclique_embedding() (in module

dwave.embedding.chimera), 61
find_biclique_embedding() (in module

dwave.embedding.pegasus), 64
find_biclique_embedding() (in module

dwave.embedding.zephyr), 65
find_clique_embedding() (in module

dwave.embedding.chimera), 60
find_clique_embedding() (in module

dwave.embedding.pegasus), 63
find_clique_embedding() (in module

dwave.embedding.zephyr), 65
find_embedding() (in module minorminer), 58
find_grid_embedding() (in module

dwave.embedding.chimera), 62
FixedEmbeddingComposite (class in

dwave.system.composites), 35
freezeout_effective_temperature() (in

module dwave.system.temperatures), 83

I
InvalidNodeError, 78
is_valid_embedding() (in module

dwave.embedding), 72

L
largest_clique() (DWaveCliqueSampler method),

13
largest_clique_size (DWaveCliqueSampler at-

tribute), 12
LazyFixedEmbeddingComposite (class in

dwave.system.composites), 39
LeapHybridCQMSampler (class in

dwave.system.samplers), 18
LeapHybridDQMSampler (class in

dwave.system.samplers), 20
LeapHybridSampler (class in

dwave.system.samplers), 14

M
majority_vote() (in module

dwave.embedding.chain_breaks), 75

maximum_pseudolikelihood_temperature()
(in module dwave.system.temperatures), 81

min_time_limit() (LeapHybridCQMSampler
method), 20

min_time_limit() (LeapHybridDQMSampler
method), 22

min_time_limit() (LeapHybridSampler method),
17

MinimizeEnergy (class in
dwave.embedding.chain_breaks), 76

MissingChainError, 77
MissingEdgeError, 78

N
nodelist (DWaveSampler attribute), 7
nodelist (FixedEmbeddingComposite attribute), 37
nodelist (LazyFixedEmbeddingComposite attribute),

40
nodelist (TilingComposite attribute), 44
nodelist (VirtualGraphComposite attribute), 49
num_tiles (TilingComposite attribute), 44

P
parameters (AutoEmbeddingComposite attribute), 30
parameters (CutOffComposite attribute), 25
parameters (DWaveCliqueSampler attribute), 12
parameters (DWaveSampler attribute), 6
parameters (EmbeddingComposite attribute), 33
parameters (FixedEmbeddingComposite attribute),

37
parameters (LazyFixedEmbeddingComposite at-

tribute), 40
parameters (LeapHybridCQMSampler attribute), 19
parameters (LeapHybridDQMSampler attribute), 21
parameters (LeapHybridSampler attribute), 15
parameters (PolyCutOffComposite attribute), 28
parameters (ReverseAdvanceComposite attribute), 55
parameters (ReverseBatchStatesComposite attribute),

52
parameters (TilingComposite attribute), 45
parameters (VirtualGraphComposite attribute), 49
PolyCutOffComposite (class in

dwave.system.composites), 26
properties (AutoEmbeddingComposite attribute), 30
properties (CutOffComposite attribute), 25
properties (DWaveCliqueSampler attribute), 12
properties (DWaveSampler attribute), 6
properties (EmbeddingComposite attribute), 33
properties (FixedEmbeddingComposite attribute),

37
properties (LazyFixedEmbeddingComposite at-

tribute), 40
properties (LeapHybridCQMSampler attribute), 19
properties (LeapHybridDQMSampler attribute), 21

94 Index

dwave-system Documentation, Release 1.18.0

properties (LeapHybridSampler attribute), 15
properties (PolyCutOffComposite attribute), 28
properties (ReverseAdvanceComposite attribute), 55
properties (ReverseBatchStatesComposite attribute),

52
properties (TilingComposite attribute), 45
properties (VirtualGraphComposite attribute), 49

Q
qpu_linear_range (DWaveCliqueSampler at-

tribute), 12
qpu_quadratic_range (DWaveCliqueSampler at-

tribute), 12

R
return_embedding_default (EmbeddingCom-

posite attribute), 33
ReverseAdvanceComposite (class in

dwave.system.composites), 54
ReverseBatchStatesComposite (class in

dwave.system.composites), 51

S
sample() (AutoEmbeddingComposite method), 30
sample() (CutOffComposite method), 25
sample() (DWaveCliqueSampler method), 13
sample() (DWaveSampler method), 8
sample() (EmbeddingComposite method), 34
sample() (FixedEmbeddingComposite method), 38
sample() (LazyFixedEmbeddingComposite method),

41
sample() (LeapHybridSampler method), 16
sample() (ReverseAdvanceComposite method), 56
sample() (ReverseBatchStatesComposite method), 52
sample() (TilingComposite method), 45
sample() (VirtualGraphComposite method), 49
sample_cqm() (LeapHybridCQMSampler method),

19
sample_dqm() (LeapHybridDQMSampler method),

22
sample_hising() (PolyCutOffComposite method),

28
sample_hubo() (PolyCutOffComposite method), 29
sample_ising() (AutoEmbeddingComposite

method), 31
sample_ising() (CutOffComposite method), 26
sample_ising() (DWaveCliqueSampler method), 13
sample_ising() (DWaveSampler method), 9
sample_ising() (EmbeddingComposite method), 35
sample_ising() (FixedEmbeddingComposite

method), 38
sample_ising() (LazyFixedEmbeddingComposite

method), 41
sample_ising() (LeapHybridSampler method), 17

sample_ising() (ReverseAdvanceComposite
method), 56

sample_ising() (ReverseBatchStatesComposite
method), 53

sample_ising() (TilingComposite method), 46
sample_ising() (VirtualGraphComposite method),

50
sample_poly() (PolyCutOffComposite method), 28
sample_qubo() (AutoEmbeddingComposite method),

32
sample_qubo() (CutOffComposite method), 26
sample_qubo() (DWaveCliqueSampler method), 14
sample_qubo() (DWaveSampler method), 9
sample_qubo() (EmbeddingComposite method), 35
sample_qubo() (FixedEmbeddingComposite

method), 39
sample_qubo() (LazyFixedEmbeddingComposite

method), 42
sample_qubo() (LeapHybridSampler method), 17
sample_qubo() (ReverseAdvanceComposite method),

57
sample_qubo() (ReverseBatchStatesComposite

method), 54
sample_qubo() (TilingComposite method), 46
sample_qubo() (VirtualGraphComposite method), 50
scaled() (in module

dwave.embedding.chain_strength), 73
structure (DWaveSampler attribute), 7
structure (FixedEmbeddingComposite attribute), 37
structure (LazyFixedEmbeddingComposite at-

tribute), 40
structure (TilingComposite attribute), 45
structure (VirtualGraphComposite attribute), 49

T
target_graph (DWaveCliqueSampler attribute), 12
TilingComposite (class in

dwave.system.composites), 42
to_networkx_graph() (DWaveSampler method),

10
TooFewSamplesWarning (class in

dwave.system.warnings), 86

U
unembed_sampleset() (in module

dwave.embedding), 69
uniform_torque_compensation() (in module

dwave.embedding.chain_strength), 73

V
validate_anneal_schedule() (DWaveSampler

method), 9
verify_embedding() (in module

dwave.embedding), 72

Index 95

dwave-system Documentation, Release 1.18.0

VirtualGraphComposite (class in
dwave.system.composites), 47

W
WarningAction (class in dwave.system.warnings), 86
WarningHandler (class in dwave.system.warnings),

86
warnings_default (EmbeddingComposite at-

tribute), 34
weighted_random() (in module

dwave.embedding.chain_breaks), 75

96 Index

	Documentation
	Python Module Index
	Index

