
dwave-system Documentation
Release 0.3.2

D-Wave Systems Inc

Jun 22, 2018

Contents

1 Documentation 3

Python Module Index 41

i

ii

dwave-system Documentation, Release 0.3.2

Note: This is an alpha release of this package.

dwave-system is a basic API for easily incorporating the D-Wave system as a sampler in the D-Wave Ocean software
stack. It includes DWaveSampler, a dimod.Sampler that accepts and passes system parameters such as system
identification and authentication down the stack. It also includes several useful composites—layers of pre- and post-
processing—that can be used with DWaveSampler to handle minor-embedding, optimize chain strength, etc.

Contents 1

http://dw-docs.readthedocs.io/en/latest/overview/stack.html#stack
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler

dwave-system Documentation, Release 0.3.2

2 Contents

CHAPTER 1

Documentation

1.1 Reference Documentation

Release 0.3.2

Date Jun 22, 2018

1.1.1 Introduction

Samplers

Samplers are processes that sample from low energy states of a problem’s objective function. A binary quadratic model
(BQM) sampler samples from low energy states in models such as those defined by an Ising equation or a Quadratic
Unconstrained Binary Optimization (QUBO) problem and returns an iterable of samples, in order of increasing energy.
A dimod sampler provides ‘sample_qubo’ and ‘sample_ising’ methods as well as the generic BQM sampler method.

Composites

Samplers can be composed. The composite pattern allows layers of pre- and post-processing to be applied to binary
quadratic programs without needing to change the underlying sampler implementation.

We refer to these layers as composites. A composed sampler includes at least one sampler and possibly many com-
posites.

D-Wave System Architecture: Chimera

The D-Wave system is Chimera-structured.

The Chimera architecture comprises sets of connected unit cells, each with four horizontal qubits connected to four
vertical qubits via couplers (bipartite connectivity). Unit cells are tiled vertically and horizontally with adjacent qubits
connected, creating a lattice of sparsely connected qubits. A unit cell is typically rendered as either a cross or a column.

3

http://dimod.readthedocs.io/en/latest/reference/samplers.html#samplers-and-composites
https://en.wikipedia.org/wiki/Composite_pattern

dwave-system Documentation, Release 0.3.2

Fig. 1: Chimera unit cell.

Minor-Embedding

To solve an arbitrarily posed binary quadratic problem on a D-Wave system requires mapping, called minor embed-
ding, to a Chimera graph that represents the system’s quantum processing unit. This preprocessing can be done by a
composed sampler consisting of the DWaveSampler and a composite that performs minor-embedding.

1.1.2 Samplers

dwave-system provides dimod samplers for using the D-Wave system.

Release 0.3.2

Date Jun 22, 2018

D-Wave Sampler

A dimod sampler for the D-Wave system.

Class

class DWaveSampler(config_file=None, profile=None, endpoint=None, token=None, solver=None,
proxy=None, permissive_ssl=False)

A class for using the D-Wave system as a sampler.

Inherits from dimod.Sampler and dimod.Structured.

Enables quick incorporation of the D-Wave system as a sampler in the D-Wave Ocean software stack. Also
enables optional customizing of input parameters to D-Wave Cloud Client (the stack’s communication-manager
package).

4 Chapter 1. Documentation

http://dimod.readthedocs.io/en/latest/reference/samplers.html#samplers-and-composites
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Structured
http://dwave-cloud-client.readthedocs.io/en/latest/

dwave-system Documentation, Release 0.3.2

Fig. 2: A 3x3 Chimera graph, denoted C3. Qubits are arranged in 9 unit cells.

1.1. Reference Documentation 5

dwave-system Documentation, Release 0.3.2

Parameters

• config_file (str, optional) – Path to a D-Wave Cloud Client configuration file
that identifies a D-Wave system and provides connection information.

• profile (str, optional) – Profile to select from a D-Wave Cloud Client configura-
tion file.

• endpoint (str, optional) – D-Wave API endpoint URL. If specified, used instead
of retrieving a value from a D-Wave Cloud Client configuration file.

• token (str, optional) – Authentication token for the D-Wave API to authenticate the
client session. If specified, used instead of retrieving a value from a D-Wave Cloud Client
configuration file.

• solver (str, optional) – Solver (a D-Wave system on which to run submitted prob-
lems). If specified, used instead of retrieving a value from a D-Wave Cloud Client configu-
ration file.

• proxy (str, optional) – Proxy URL to be used for accessing the D-Wave API. If
specified, used instead of retrieving a value from a D-Wave Cloud Client configuration file.

Examples

This example creates a DWaveSampler based on a fictive user’s D-Wave Cloud Client configuration file and
submits a simple Ising problem of just two variables that map to qubits 0 and 1 on the example system. (The
simplicity of this example obviates the need for an embedding composite—the presence of qubits 0 and 1 on the
selected D-Wave system can be verified manually.)

>>> # Example configuration file /home/susan/.config/dwave/dwave.conf:
>>> # [defaults]
>>> # endpoint = https://url.of.some.dwavesystem.com/sapi
>>> # client = qpu
>>> #
>>> # [dw2000]
>>> # solver = EXAMPLE_2000Q_SYSTEM
>>> # token = ABC-123456789123456789123456789
>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> response = sampler.sample_ising({0: -1, 1: 1}, {})
>>> for sample in response.samples():
... print(sample)
...
{0: 1, 1: -1}

Sampler Properties

DWaveSampler.properties dict – D-Wave solver properties as returned by a SAPI
query.

DWaveSampler.parameters dict[str, list] – D-Wave solver parameters in the form
of a dict, where keys are keyword parameters accepted
by a SAPI query and values are lists of properties in
DWaveSampler.properties for each key.

6 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
https://docs.python.org/3/library/stdtypes.html#str
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
https://docs.python.org/3/library/stdtypes.html#str
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
https://docs.python.org/3/library/stdtypes.html#str
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
https://docs.python.org/3/library/stdtypes.html#str
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
https://docs.python.org/3/library/stdtypes.html#str
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

dwave.system.samplers.DWaveSampler.properties

DWaveSampler.properties
dict – D-Wave solver properties as returned by a SAPI query.

Solver properties are dependent on the selected D-Wave solver and subject to change; for example, new released
features may add properties.

Examples

This example creates a DWaveSampler and prints the properties retrieved from a D-Wave solver selected by
the user’s default D-Wave Cloud Client configuration file.

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.properties
{u'anneal_offset_ranges': [[-0.2197463755538704, 0.03821687759418928],
[-0.2242514597680286, 0.01718456460967399],
[-0.20860153999435985, 0.05511969218508182],

Snipped above response for brevity

dwave.system.samplers.DWaveSampler.parameters

DWaveSampler.parameters
dict[str, list] – D-Wave solver parameters in the form of a dict, where keys are keyword parameters accepted by
a SAPI query and values are lists of properties in DWaveSampler.properties for each key.

Solver parameters are dependent on the selected D-Wave solver and subject to change; for example, new released
features may add parameters.

Examples

This example creates a DWaveSampler and prints the parameters retrieved from a D-Wave solver selected by
the user’s default D-Wave Cloud Client configuration file.

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.parameters
{u'anneal_offsets': ['parameters'],
u'anneal_schedule': ['parameters'],
u'annealing_time': ['parameters'],
u'answer_mode': ['parameters'],
u'auto_scale': ['parameters'],
Snipped above response for brevity

Structured Sampler Properties

DWaveSampler.nodelist list – List of active qubits for the D-Wave solver.
DWaveSampler.edgelist list – List of active couplers for the D-Wave solver.

Continued on next page

1.1. Reference Documentation 7

http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

Table 2 – continued from previous page
DWaveSampler.adjacency dict[variable, set] – Adjacency structure formatted as a

dict, where keys are the nodes of the structured sampler
and values are sets of all adjacent nodes for each key
node.

DWaveSampler.structure Structure of the structured sampler formatted as
a namedtuple Structure(nodelist,
edgelist, adjacency), where the 3-tuple
values are the nodelist and edgelist properties
and adjacency() method.

dwave.system.samplers.DWaveSampler.nodelist

DWaveSampler.nodelist
list – List of active qubits for the D-Wave solver.

Examples

This example creates a DWaveSampler and prints the active qubits retrieved from a D-Wave solver selected
by the user’s default D-Wave Cloud Client configuration file.

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.nodelist
[0,
1,
2,
3,
4,
5,
Snipped above response for brevity

dwave.system.samplers.DWaveSampler.edgelist

DWaveSampler.edgelist
list – List of active couplers for the D-Wave solver.

Examples

This example creates a DWaveSampler and prints the active couplers retrieved from a D-Wave solver selected
by the user’s default D-Wave Cloud Client configuration file.

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.edgelist
[(0, 4),
(0, 5),
(0, 6),
(0, 7),
(0, 128),
(1, 4),

(continues on next page)

8 Chapter 1. Documentation

http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

(continued from previous page)

(1, 5),
(1, 6),
(1, 7),
(1, 129),
(2, 4),
Snipped above response for brevity

dwave.system.samplers.DWaveSampler.adjacency

DWaveSampler.adjacency
dict[variable, set] – Adjacency structure formatted as a dict, where keys are the nodes of the structured sampler
and values are sets of all adjacent nodes for each key node.

Examples

This example shows the adjacencies for a placeholder structured sampler that samples only from the K4 com-
plete graph, where each of the four nodes connects to all the other nodes.

>>> class K4StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3, 4]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
>>> K4sampler = K4StructuredClass()
>>> K4sampler.adjacency.keys()
[1, 2, 3, 4]

dwave.system.samplers.DWaveSampler.structure

DWaveSampler.structure
Structure of the structured sampler formatted as a namedtuple Structure(nodelist, edgelist,
adjacency), where the 3-tuple values are the nodelist and edgelist properties and adjacency()
method.

Examples

This example shows the structure of a placeholder structured sampler that samples only from the K3 complete
graph, where each of the three nodes connects to all the other nodes.

>>> class K3StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3]
...
... @property
... def edgelist(self):

(continues on next page)

1.1. Reference Documentation 9

dwave-system Documentation, Release 0.3.2

(continued from previous page)

... return [(1, 2), (1, 3), (2, 3)]
>>> K3sampler = K3StructuredClass()
>>> K3sampler.structure.edgelist
[(1, 2), (1, 3), (2, 3)]

Methods

DWaveSampler.sample(bqm, **parameters) Samples from a binary quadratic model using an imple-
mented sample method.

DWaveSampler.sample_ising(h, J, **kwargs) Sample from the provided Ising model.
DWaveSampler.sample_qubo(Q, **kwargs) Sample from the provided QUBO.

dwave.system.samplers.DWaveSampler.sample

DWaveSampler.sample(bqm, **parameters)
Samples from a binary quadratic model using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using the mixin binary quadratic model
sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}
→˓) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> model = dimod.BinaryQuadraticModel({0: 1, 1: -1, 2: .5},
... {(0, 1): .5, (1, 2): 1.5},
... 1.4,
... dimod.SPIN)
>>> response = sampler.sample(model)
>>> print(response)
[[-1 1]]

dwave.system.samplers.DWaveSampler.sample_ising

DWaveSampler.sample_ising(h, J, **kwargs)
Sample from the provided Ising model.

Parameters

10 Chapter 1. Documentation

dwave-system Documentation, Release 0.3.2

• h (list/dict) – Linear biases of the Ising model. If a list, the list’s indices are used as
variable labels.

• J (dict[(int, int) – float]): Quadratic biases of the Ising model.

• **kwargs – Optional keyword arguments for the sampling method, specified per solver in
DWaveSampler.parameters

Returns dimod.Response

Examples

This example creates a DWaveSampler based on a D-Wave solver selected by the user’s default D-Wave
Cloud Client configuration file and submits a simple Ising problem of just two variables that map to qubits 0 and
1 on the example system. (The simplicity of this example obviates the need for an embedding composite—the
presence of qubits 0 and 1 on the selected D-Wave system can be verified manually.)

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> response = sampler.sample_ising({0: -1, 1: 1}, {})
>>> for sample in response.samples():
... print(sample)
...
{0: 1, 1: -1}

dwave.system.samplers.DWaveSampler.sample_qubo

DWaveSampler.sample_qubo(Q, **kwargs)
Sample from the provided QUBO.

Parameters

• Q (dict) – Coefficients of a quadratic unconstrained binary optimization (QUBO) model.

• **kwargs – Optional keyword arguments for the sampling method, specified per solver in
DWaveSampler.parameters

Returns dimod.Response

Examples

This example creates a DWaveSampler based on a D-Wave solver selected by the user’s default D-Wave
Cloud Client configuration file and submits a simple QUBO problem of just two variables that map to coupled
qubits 0 and 4 on the example system. (The simplicity of this example obviates the need for an embedding
composite—the presence of qubits 0 and 4, and their coupling, on the selected D-Wave system can be verified
manually.)

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> Q = {(0, 0): -1, (4, 4): -1, (0, 4): 2}
>>> response = sampler.sample_qubo(Q)
>>> for sample in response.samples():
... print(sample)
...
{0: 0, 4: 1}

1.1. Reference Documentation 11

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
https://docs.python.org/3/library/stdtypes.html#dict
http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

1.1.3 Composites

dwave-system provides dimod composites for using the D-Wave system.

Release 0.3.2

Date Jun 22, 2018

EmbeddingComposite

Class

A dimod composite that maps unstructured problems to a structured sampler.

A structured sampler can only solve problems that map to a specific graph: the D-Wave system’s architecture is
represented by a Chimera graph.

The EmbeddingComposite uses the minorminer library to map unstructured problems to a structured sampler
such as a D-Wave system.

class EmbeddingComposite(child_sampler)
Composite to map unstructured problems to a structured sampler.

Inherits from dimod.ComposedSampler.

Enables quick incorporation of the D-Wave system as a sampler in the D-Wave Ocean software stack by handling
the minor-embedding of the problem into the D-Wave system’s Chimera graph.

Parameters sampler (dimod.Sampler) – Structured dimod sampler.

Examples

This example uses EmbeddingComposite to instantiate a composed sampler that submits a simple Ising
problem to a D-Wave solver selected by the user’s default D-Wave Cloud Client configuration file. The com-
posed sampler handles minor-embedding of the problem’s two generic variables, a and b, to physical qubits on
the solver.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> h = {'a': -1., 'b': 2}
>>> J = {('a', 'b'): 1.5}
>>> response = sampler.sample_ising(h, J)
>>> for sample in response.samples():
... print(sample)
...
{'a': 1, 'b': -1}

Sampler Properties

EmbeddingComposite.properties dict – Properties in the form of a dict.
EmbeddingComposite.parameters dict[str, list] – Parameters in the form of a dict.

12 Chapter 1. Documentation

http://dimod.readthedocs.io/en/latest/reference/samplers.html#samplers-and-composites
http://dimod.readthedocs.io/en/latest/reference/samplers.html
http://dimod.readthedocs.io/en/latest/reference/samplers.html#module-dimod.core.structured
http://dimod.readthedocs.io/en/latest/reference/samplers.html#module-dimod.core.structured
http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera
https://github.com/dwavesystems/minorminer
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.ComposedSampler
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

dwave.system.composites.EmbeddingComposite.properties

EmbeddingComposite.properties
dict – Properties in the form of a dict.

For an instantiated composed sampler, contains one key 'child_properties' that has a copy of the child
sampler’s properties.

Examples

This example instantiates a composed sampler using a D-Wave solver selected by the user’s default D-Wave
Cloud Client configuration file and views the solver’s properties.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> sampler.properties
{'child_properties': {u'anneal_offset_ranges': [[-0.2197463755538704,

0.03821687759418928],
[-0.2242514597680286, 0.01718456460967399],
[-0.20860153999435985, 0.05511969218508182],

>>> # Snipped above response for brevity

dwave.system.composites.EmbeddingComposite.parameters

EmbeddingComposite.parameters
dict[str, list] – Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters accepted by the child sampler.

Examples

This example instantiates a composed sampler using a D-Wave solver selected by the user’s default D-Wave
Cloud Client configuration file and views the solver’s parameters.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> sampler.parameters
{'anneal_offsets': ['parameters'],
'anneal_schedule': ['parameters'],
'annealing_time': ['parameters'],
'answer_mode': ['parameters'],
'auto_scale': ['parameters'],
>>> # Snipped above response for brevity

Composite Properties

1.1. Reference Documentation 13

http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

EmbeddingComposite.children list – Children property inherited from dimod.
Composite class.

EmbeddingComposite.child First child in children.

dwave.system.composites.EmbeddingComposite.children

EmbeddingComposite.children
list – Children property inherited from dimod.Composite class.

For an instantiated composed sampler, contains the single wrapped structured sampler.

Examples

This example instantiates a composed sampler using a D-Wave solver selected by the user’s default D-Wave
Cloud Client configuration file and views the solver’s parameters.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> sampler.children
[<dwave.system.samplers.dwave_sampler.DWaveSampler at 0x7f45b20a8d50>]

dwave.system.composites.EmbeddingComposite.child

EmbeddingComposite.child
First child in children.

Examples

This example pseudocode defines a composed sampler that uses the first supported sampler in a composite’s list
of samplers on a binary quadratic model.

class MyComposedSampler(Sampler, Composite):

children = None
parameters = None
properties = None

def __init__(self, child):
self.children = [child]

self.parameters = child.parameters.copy() # propagate parameters
self.parameters['my_additional_parameter'] = []

self.properties = child.properties.copy() # propagate properties

Implementation of the composite's functionality
def sample(self, bqm, my_additional_parameter, **kwargs):

Overwrite the abstract sample method.
Additional parameters must have defaults

(continues on next page)

14 Chapter 1. Documentation

http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Composite
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Composite
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Composite
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

(continued from previous page)

Samples are obtained from the sampler by using the `child` property:
response = self.child.sample(bqm, **kwargs)

raise NotImplementedError

Methods

EmbeddingComposite.sample(bqm[,
chain_strength])

Sample from the provided binary quadratic model.

EmbeddingComposite.sample_ising(h, J,
. . .)

Samples from an Ising model using an implemented
sample method.

EmbeddingComposite.sample_qubo(Q, **pa-
rameters)

Samples from a QUBO using an implemented sample
method.

dwave.system.composites.EmbeddingComposite.sample

EmbeddingComposite.sample(bqm, chain_strength=1.0, **parameters)
Sample from the provided binary quadratic model.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• chain_strength (float, optional, default=1.0) – Magnitude of the
quadratic bias (in SPIN-space) applied between variables to create chains. Note that the
energy penalty of chain breaks is 2 * chain_strength.

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.Response

Examples

This example uses EmbeddingComposite to instantiate a composed sampler that submits an unstructured
Ising problem to a D-Wave solver, selected by the user’s default D-Wave Cloud Client configuration_ file, while
minor-embedding the problem’s variables to physical qubits on the solver.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> import dimod
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> h = {1: 1, 2: 2, 3: 3, 4: 4}
>>> J = {(1, 2): 12, (1, 3): 13, (1, 4): 14,
... (2, 3): 23, (2, 4): 24,
... (3, 4): 34}
>>> bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
>>> response = sampler.sample(bqm)
>>> for sample in response.samples():
... print(sample)
...
{1: -1, 2: 1, 3: 1, 4: -1}

1.1. Reference Documentation 15

http://dimod.readthedocs.io/en/latest/reference/binary_quadratic_model.html#dimod.BinaryQuadraticModel
https://docs.python.org/3/library/functions.html#float
http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response

dwave-system Documentation, Release 0.3.2

dwave.system.composites.EmbeddingComposite.sample_ising

EmbeddingComposite.sample_ising(h, J, **parameters)
Samples from an Ising model using an implemented sample method.

Examples

This example implements a placeholder QUBO sampler and samples using the mixin Ising sampler.

>>> import dimod
>>> class ImplementQuboSampler(dimod.Sampler):
... def sample_qubo(self, Q):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}
→˓) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementQuboSampler()
>>> h = {1: 0.5, 2: -1, 3: -0.75}
>>> J = {}
>>> response = sampler.sample_ising(h, J)
>>> print(response)
[[-1 1]]

dwave.system.composites.EmbeddingComposite.sample_qubo

EmbeddingComposite.sample_qubo(Q, **parameters)
Samples from a QUBO using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using the mixin QUBO sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}
→˓) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> Q = {(0, 0): -0.5, (0, 1): 1, (1, 1): -0.75}
>>> response = sampler.sample_qubo(Q)

(continues on next page)

16 Chapter 1. Documentation

dwave-system Documentation, Release 0.3.2

(continued from previous page)

>>> print(response)
[[0 1]]

FixedEmbeddingComposite

Class

class FixedEmbeddingComposite(child_sampler, embedding)
Composite to alter the structure of a child sampler via an embedding.

Inherits from dimod.ComposedSampler and dimod.Structured.

Parameters

• sampler (dimod.Sampler) – Structured dimod sampler.

• embedding (dict[hashable, iterable]) – Mapping from a source graph to the
specified sampler’s graph (the target graph).

Examples

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import FixedEmbeddingComposite
...
>>> sampler = FixedEmbeddingComposite(DWaveSampler(), {'a': [0, 4], 'b': [1, 5],
→˓'c': [2, 6]})
>>> sampler.nodelist
['a', 'b', 'c']
>>> sampler.edgelist
[('a', 'b'), ('a', 'c'), ('b', 'c')]
>>> resp = sampler.sample_ising({'a': .5, 'c': 0}, {('a', 'c'): -1})

Sampler Properties

FixedEmbeddingComposite.properties dict – Properties in the form of a dict.
FixedEmbeddingComposite.parameters dict[str, list] – Parameters in the form of a dict.

dwave.system.composites.FixedEmbeddingComposite.properties

FixedEmbeddingComposite.properties = None
dict – Properties in the form of a dict.

For an instantiated composed sampler, 'child_properties' has a copy of the child sampler’s properties
and 'embedding' contains the fixed embedding.

dwave.system.composites.FixedEmbeddingComposite.parameters

FixedEmbeddingComposite.parameters = None
dict[str, list] – Parameters in the form of a dict.

1.1. Reference Documentation 17

http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.ComposedSampler
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Structured
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 0.3.2

The same as the child sampler with the addition of ‘chain_strength’

Composite Properties

FixedEmbeddingComposite.children list – List containing the wrapped sampler.
FixedEmbeddingComposite.child First child in children.

dwave.system.composites.FixedEmbeddingComposite.children

FixedEmbeddingComposite.children = None
list – List containing the wrapped sampler.

dwave.system.composites.FixedEmbeddingComposite.child

FixedEmbeddingComposite.child
First child in children.

Examples

This example pseudocode defines a composed sampler that uses the first supported sampler in a composite’s list
of samplers on a binary quadratic model.

class MyComposedSampler(Sampler, Composite):

children = None
parameters = None
properties = None

def __init__(self, child):
self.children = [child]

self.parameters = child.parameters.copy() # propagate parameters
self.parameters['my_additional_parameter'] = []

self.properties = child.properties.copy() # propagate properties

Implementation of the composite's functionality
def sample(self, bqm, my_additional_parameter, **kwargs):

Overwrite the abstract sample method.
Additional parameters must have defaults

Samples are obtained from the sampler by using the `child` property:
response = self.child.sample(bqm, **kwargs)

raise NotImplementedError

Structured Sampler Properties

18 Chapter 1. Documentation

dwave-system Documentation, Release 0.3.2

FixedEmbeddingComposite.nodelist list – Nodes available to the composed sampler.
FixedEmbeddingComposite.edgelist list – Edges available to the composed sampler.
FixedEmbeddingComposite.adjacency dict[variable, set] – Adjacency structure for the com-

posed sampler.
FixedEmbeddingComposite.structure Structure of the structured sampler formatted as

a namedtuple Structure(nodelist,
edgelist, adjacency), where the 3-tuple
values are the nodelist and edgelist properties
and adjacency() method.

dwave.system.composites.FixedEmbeddingComposite.nodelist

FixedEmbeddingComposite.nodelist = None
list – Nodes available to the composed sampler.

dwave.system.composites.FixedEmbeddingComposite.edgelist

FixedEmbeddingComposite.edgelist = None
list – Edges available to the composed sampler.

dwave.system.composites.FixedEmbeddingComposite.adjacency

FixedEmbeddingComposite.adjacency = None
dict[variable, set] – Adjacency structure for the composed sampler.

dwave.system.composites.FixedEmbeddingComposite.structure

FixedEmbeddingComposite.structure
Structure of the structured sampler formatted as a namedtuple Structure(nodelist, edgelist,
adjacency), where the 3-tuple values are the nodelist and edgelist properties and adjacency()
method.

Examples

This example shows the structure of a placeholder structured sampler that samples only from the K3 complete
graph, where each of the three nodes connects to all the other nodes.

>>> class K3StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (2, 3)]
>>> K3sampler = K3StructuredClass()
>>> K3sampler.structure.edgelist
[(1, 2), (1, 3), (2, 3)]

1.1. Reference Documentation 19

dwave-system Documentation, Release 0.3.2

Methods

FixedEmbeddingComposite.sample(bqm,
**kwargs)

Sample from the provided binary quadratic model.

FixedEmbeddingComposite.
sample_ising(h, J, . . .)

Samples from an Ising model using an implemented
sample method.

FixedEmbeddingComposite.
sample_qubo(Q, . . .)

Samples from a QUBO using an implemented sample
method.

dwave.system.composites.FixedEmbeddingComposite.sample

FixedEmbeddingComposite.sample(bqm, **kwargs)
Sample from the provided binary quadratic model.

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• chain_strength (float, optional, default=1.0) – Magnitude of the
quadratic bias (in SPIN-space) applied between variables to create chains. Note that the
energy penalty of chain breaks is 2 * chain_strength.

• **parameters – Parameters for the sampling method, specified by the child sampler.

Returns dimod.Response

Examples

This example uses FixedEmbeddingComposite to instantiate a composed sampler that submits an unstruc-
tured Ising problem to a D-Wave solver, selected by the user’s default D-Wave Cloud Client configuration_ file,
while minor-embedding the problem’s variables to physical qubits on the solver.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import FixedEmbeddingComposite
>>> import dimod
>>> sampler = FixedEmbeddingComposite(DWaveSampler(), {'a': [0, 4], 'b': [1, 5],
→˓'c': [2, 6]})
>>> resp = sampler.sample_ising({'a': .5, 'c': 0}, {('a', 'c'): -1})

dwave.system.composites.FixedEmbeddingComposite.sample_ising

FixedEmbeddingComposite.sample_ising(h, J, **parameters)
Samples from an Ising model using an implemented sample method.

Examples

This example implements a placeholder QUBO sampler and samples using the mixin Ising sampler.

>>> import dimod
>>> class ImplementQuboSampler(dimod.Sampler):
... def sample_qubo(self, Q):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}
→˓) # Placeholder (continues on next page)

20 Chapter 1. Documentation

http://dimod.readthedocs.io/en/latest/reference/binary_quadratic_model.html#dimod.BinaryQuadraticModel
https://docs.python.org/3/library/functions.html#float
http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response

dwave-system Documentation, Release 0.3.2

(continued from previous page)

... @property

... def properties(self):

... return self._properties

... @property

... def parameters(self):

... return dict()

...
>>> sampler = ImplementQuboSampler()
>>> h = {1: 0.5, 2: -1, 3: -0.75}
>>> J = {}
>>> response = sampler.sample_ising(h, J)
>>> print(response)
[[-1 1]]

dwave.system.composites.FixedEmbeddingComposite.sample_qubo

FixedEmbeddingComposite.sample_qubo(Q, **parameters)
Samples from a QUBO using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using the mixin QUBO sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}
→˓) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> Q = {(0, 0): -0.5, (0, 1): 1, (1, 1): -0.75}
>>> response = sampler.sample_qubo(Q)
>>> print(response)
[[0 1]]

TilingComposite

Class

A dimod composite that tiles small problems multiple times to a Chimera-structured sampler.

The TilingComposite takes a problem that can fit on a small Chimera graph and replicates it across a larger
Chimera graph to obtain samples from multiple areas of the solver in one call. For example, a 2x2 Chimera lattice
could be tiled 64 times (8x8) on a fully-yielded D-Wave 2000Q system (16x16).

1.1. Reference Documentation 21

http://dimod.readthedocs.io/en/latest/reference/samplers.html
http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera

dwave-system Documentation, Release 0.3.2

class TilingComposite(sampler, sub_m, sub_n, t=4)
Composite to tile a small problem across a Chimera-structured sampler.

Inherits from dimod.Sampler, dimod.Composite, and dimod.Structured.

Enables parallel sampling for small problems (problems that are minor-embeddable in a small part of a D-Wave
solver’s Chimera graph).

The notation CN refers to a Chimera graph consisting of an NxN grid of unit cells. Each Chimera unit cell is
itself a bipartite graph with shores of size t. The D-Wave 2000Q QPU supports a C16 Chimera graph: its 2048
qubits are logically mapped into a 16x16 matrix of unit cell of 8 qubits (t=4).

A problem that can be minor-embedded in a single unit cell, for example, can therefore be tiled across the unit
cells of a D-Wave 2000Q as 16x16 duplicates. This enables sampling 256 solutions in a single call.

Parameters

• sampler (dimod.Sampler) – Structured dimod sampler to be wrapped.

• sub_m (int) – Number of rows of Chimera unit cells for minor-embedding the problem
once.

• sub_n (int) – Number of columns of Chimera unit cells for minor-embedding the problem
once.

• t (int, optional, default=4) – Size of the shore within each Chimera unit cell.

Examples

This example instantiates a composed sampler using composite TilingComposite to tile a QUBO problem
on a D-Wave solver, embedding it with composite EmbeddingComposite and selecting the D-Wave solver
with the user’s default D-Wave Cloud Client configuration file. The two-variable QUBO represents a logical
NOT gate (two nodes with biases of -1 that are coupled with strength 2) and is easily minor-embedded in a
single Chimera cell (it needs only any two coupled qubits) and so can be tiled multiple times across a D-Wave
solver for parallel solution (the two nodes should typically have opposite values).

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> from dwave.system.composites import TilingComposite
>>> sampler = EmbeddingComposite(TilingComposite(DWaveSampler(), 1, 1, 4))
>>> Q = {(1, 1): -1, (1, 2): 2, (2, 1): 0, (2, 2): -1}
>>> response = sampler.sample_qubo(Q)
>>> for sample in response.samples():
... print(sample)
...
{1: 0, 2: 1}
{1: 1, 2: 0}
{1: 1, 2: 0}
{1: 1, 2: 0}
{1: 0, 2: 1}
{1: 0, 2: 1}
{1: 1, 2: 0}
{1: 0, 2: 1}
{1: 1, 2: 0}
>>> # Snipped above response for brevity

22 Chapter 1. Documentation

http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Composite
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Structured
http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

Sampler Properties

TilingComposite.properties dict – Properties in the form of a dict.
TilingComposite.parameters dict[str, list] – Parameters in the form of a dict.

dwave.system.composites.TilingComposite.properties

TilingComposite.properties = None
dict – Properties in the form of a dict.

For an instantiated composed sampler, contains one key 'child_properties' that has a copy of the child
sampler’s properties.

Examples

This example instantiates a TilingComposite sampler using a D-Wave solver selected by the user’s default
D-Wave Cloud Client configuration file and views the solver’s properties.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import TilingComposite
>>> sampler_tile = TilingComposite(DWaveSampler(), 1, 1, 4)
>>> sampler_tile.properties
{'child_properties': {u'anneal_offset_ranges': [[-0.2197463755538704,

0.03821687759418928],
[-0.2242514597680286, 0.01718456460967399],
[-0.20860153999435985, 0.05511969218508182],
[-0.2108920134230625, 0.056392603743884134],
[-0.21788292874621265, 0.03360435584845211],
[-0.21700680373359477, 0.005297355417068621],

>>> # Snipped above response for brevity

dwave.system.composites.TilingComposite.parameters

TilingComposite.parameters = None
dict[str, list] – Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters accepted by the child sampler.

Examples

This example instantiates a TilingComposite sampler using a D-Wave solver selected by the user’s default
D-Wave Cloud Client configuration file and views the solver’s parameters.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import TilingComposite
>>> sampler_tile = TilingComposite(DWaveSampler(), 1, 1, 4)
>>> sampler_tile.parameters
{u'anneal_offsets': ['parameters'],
u'anneal_schedule': ['parameters'],
u'annealing_time': ['parameters'],
u'answer_mode': ['parameters'],

(continues on next page)

1.1. Reference Documentation 23

http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

(continued from previous page)

u'auto_scale': ['parameters'],
>>> # Snipped above response for brevity

Composite Properties

TilingComposite.children list – The single wrapped structured sampler.
TilingComposite.child First child in children.

dwave.system.composites.TilingComposite.children

TilingComposite.children = None
list – The single wrapped structured sampler.

dwave.system.composites.TilingComposite.child

TilingComposite.child
First child in children.

Examples

This example pseudocode defines a composed sampler that uses the first supported sampler in a composite’s list
of samplers on a binary quadratic model.

class MyComposedSampler(Sampler, Composite):

children = None
parameters = None
properties = None

def __init__(self, child):
self.children = [child]

self.parameters = child.parameters.copy() # propagate parameters
self.parameters['my_additional_parameter'] = []

self.properties = child.properties.copy() # propagate properties

Implementation of the composite's functionality
def sample(self, bqm, my_additional_parameter, **kwargs):

Overwrite the abstract sample method.
Additional parameters must have defaults

Samples are obtained from the sampler by using the `child` property:
response = self.child.sample(bqm, **kwargs)

raise NotImplementedError

24 Chapter 1. Documentation

dwave-system Documentation, Release 0.3.2

Structured Sampler Properties

TilingComposite.nodelist list – List of active qubits for the structured solver.
TilingComposite.edgelist list – List of active couplers for the D-Wave solver.
TilingComposite.adjacency dict[variable, set] – Adjacency structure formatted as a

dict, where keys are the nodes of the structured sampler
and values are sets of all adjacent nodes for each key
node.

TilingComposite.structure Structure of the structured sampler formatted as
a namedtuple Structure(nodelist,
edgelist, adjacency), where the 3-tuple
values are the nodelist and edgelist properties
and adjacency() method.

dwave.system.composites.TilingComposite.nodelist

TilingComposite.nodelist = None
list – List of active qubits for the structured solver.

Examples

This example creates a TilingComposite for a problem that requires a 2x1 Chimera lattice to solve with
a DWaveSampler as the sampler. It prints the active qubits retrieved from a D-Wave solver selected by the
user’s default D-Wave Cloud Client configuration file.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import TilingComposite
>>> sampler_tile = TilingComposite(DWaveSampler(), 2, 1, 4)
>>> sampler_tile.nodelist
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

dwave.system.composites.TilingComposite.edgelist

TilingComposite.edgelist = None
list – List of active couplers for the D-Wave solver.

Examples

This example creates a TilingComposite for a problem that requires a 1x2 Chimera lattice to solve with a
DWaveSampler as the sampler. It prints the active couplers retrieved from a D-Wave solver selected by the
user’s default D-Wave Cloud Client configuration file.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import TilingComposite
>>> sampler_tile = TilingComposite(DWaveSampler(), 1, 2, 4)
>>> sampler_tile.edgelist
[[0, 4],
[0, 5],
[0, 6],

(continues on next page)

1.1. Reference Documentation 25

http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

(continued from previous page)

[0, 7],
[1, 4],
[1, 5],
[1, 6],
[1, 7],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[3, 4],
[3, 5],
[3, 6],
[3, 7],
[4, 12],
[5, 13],
[6, 14],
[7, 15],
[8, 12],
[8, 13],
[8, 14],
[8, 15],
[9, 12],
[9, 13],
[9, 14],
[9, 15],
[10, 12],
[10, 13],
[10, 14],
[10, 15],
[11, 12],
[11, 13],
[11, 14],
[11, 15]]

dwave.system.composites.TilingComposite.adjacency

TilingComposite.adjacency
dict[variable, set] – Adjacency structure formatted as a dict, where keys are the nodes of the structured sampler
and values are sets of all adjacent nodes for each key node.

Examples

This example shows the adjacencies for a placeholder structured sampler that samples only from the K4 com-
plete graph, where each of the four nodes connects to all the other nodes.

>>> class K4StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3, 4]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]

(continues on next page)

26 Chapter 1. Documentation

dwave-system Documentation, Release 0.3.2

(continued from previous page)

>>> K4sampler = K4StructuredClass()
>>> K4sampler.adjacency.keys()
[1, 2, 3, 4]

dwave.system.composites.TilingComposite.structure

TilingComposite.structure
Structure of the structured sampler formatted as a namedtuple Structure(nodelist, edgelist,
adjacency), where the 3-tuple values are the nodelist and edgelist properties and adjacency()
method.

Examples

This example shows the structure of a placeholder structured sampler that samples only from the K3 complete
graph, where each of the three nodes connects to all the other nodes.

>>> class K3StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (2, 3)]
>>> K3sampler = K3StructuredClass()
>>> K3sampler.structure.edgelist
[(1, 2), (1, 3), (2, 3)]

Methods

TilingComposite.sample(bqm, **kwargs) Sample from the provided binary quadratic model
TilingComposite.sample_ising(h, J, **pa-
rameters)

Samples from an Ising model using an implemented
sample method.

TilingComposite.sample_qubo(Q, **parame-
ters)

Samples from a QUBO using an implemented sample
method.

dwave.system.composites.TilingComposite.sample

TilingComposite.sample(bqm, **kwargs)
Sample from the provided binary quadratic model

Parameters

• bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

• **kwargs – Optional keyword arguments for the sampling method, specified per solver.

Returns dimod.Response

1.1. Reference Documentation 27

http://dimod.readthedocs.io/en/latest/reference/binary_quadratic_model.html#dimod.BinaryQuadraticModel
http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response

dwave-system Documentation, Release 0.3.2

Examples

This example uses TilingComposite to instantiate a composed sampler that submits a simple Ising problem
of just two variables that map to qubits 0 and 1 on the D-Wave solver selected by the user’s default D-Wave
Cloud Client configuration file. (The simplicity of this example obviates the need for an embedding composite.)
Because the problem fits in a single Chimera unit cell, it is tiled across the solver’s entire Chimera graph,
resulting in multiple samples.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite, TilingComposite
>>> sampler = TilingComposite(DWaveSampler(), 1, 1, 4)
>>> response = sampler.sample_ising({0: -1, 1: 1}, {})
>>> for sample in response.samples():
... print(sample)
...
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
>>> # Snipped above response for brevity

dwave.system.composites.TilingComposite.sample_ising

TilingComposite.sample_ising(h, J, **parameters)
Samples from an Ising model using an implemented sample method.

Examples

This example implements a placeholder QUBO sampler and samples using the mixin Ising sampler.

>>> import dimod
>>> class ImplementQuboSampler(dimod.Sampler):
... def sample_qubo(self, Q):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}
→˓) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementQuboSampler()
>>> h = {1: 0.5, 2: -1, 3: -0.75}
>>> J = {}
>>> response = sampler.sample_ising(h, J)
>>> print(response)
[[-1 1]]

28 Chapter 1. Documentation

http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera

dwave-system Documentation, Release 0.3.2

dwave.system.composites.TilingComposite.sample_qubo

TilingComposite.sample_qubo(Q, **parameters)
Samples from a QUBO using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using the mixin QUBO sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}
→˓) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> Q = {(0, 0): -0.5, (0, 1): 1, (1, 1): -0.75}
>>> response = sampler.sample_qubo(Q)
>>> print(response)
[[0 1]]

VirtualGraphComposite

Class

A dimod composite that uses the D-Wave virtual graph feature for improved minor-embedding.

D-Wave virtual graphs simplify the process of minor-embedding by enabling you to more easily create, optimize, use,
and reuse an embedding for a given working graph. When you submit an embedding and specify a chain strength
using these tools, they automatically calibrate the qubits in a chain to compensate for the effects of biases that may be
introduced as a result of strong couplings.

class VirtualGraphComposite(sampler, embedding, chain_strength=None, flux_biases=None,
flux_bias_num_reads=1000, flux_bias_max_age=3600)

Composite to use the D-Wave virtual graph feature for minor-embedding.

Inherits from dimod.ComposedSampler and dimod.Structured.

Calibrates qubits in chains to compensate for the effects of biases and enables easy creation, optimization, use,
and reuse of an embedding for a given working graph.

Parameters

• sampler (DWaveSampler) – A dimod dimod.Sampler. Typically a
DWaveSampler or derived composite sampler; other samplers may not work or
make sense with this composite layer.

• embedding (dict[hashable, iterable]) – Mapping from a source graph to the
specified sampler’s graph (the target graph).

1.1. Reference Documentation 29

http://dimod.readthedocs.io/en/latest/reference/samplers.html
http://dwave-system.readthedocs.io/en/latest/reference/intro.html#minorEmbedding
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.ComposedSampler
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Structured
http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler
https://docs.python.org/3/library/stdtypes.html#dict

dwave-system Documentation, Release 0.3.2

• chain_strength (float, optional, default=None) – Desired chain cou-
pling strength. This is the magnitude of couplings between qubits in a chain. If None,
uses the maximum available as returned by a SAPI query to the D-Wave solver.

• flux_biases (list/False/None, optional, default=None) – Per-qubit
flux bias offsets in the form of a list of lists, where each sublist is of length 2 and speci-
fies a variable and the flux bias offset associated with that variable. Qubits in a chain with
strong negative J values experience a J-induced bias; this parameter compensates by recal-
ibrating to remove that bias. If False, no flux bias is applied or calculated. If None, flux
biases are pulled from the database or calculated empirically.

• flux_bias_num_reads (int, optional, default=1000) – Number of sam-
ples to collect per flux bias value.

• flux_bias_max_age (int, optional, default=3600) – Maximum age (in
seconds) allowed for a previously calculated flux bias offset to be considered valid.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler that submits a QUBO
problem to a D-Wave solver selected by the user’s default D-Wave Cloud Client configuration file. The problem
represents a logical AND gate using penalty function 𝑃 = 𝑥𝑦 − 2(𝑥 + 𝑦)𝑧 + 3𝑧, where variables x and y are
the gate’s inputs and z the output. This simple three-variable problem is manually minor-embedded to a single
Chimera unit cell: variables x and y are represented by qubits 1 and 5, respectively, and z by a two-qubit chain
consisting of qubits 0 and 4. The chain strength is set to the maximum allowed found from querying the solver’s
extended J range. In this example, the ten returned samples all represent valid states of the AND gate.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}}
>>> DWaveSampler().properties['extended_j_range']
[-2.0, 1.0]
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding, chain_strength=2)
>>> Q = {('x', 'y'): 1, ('x', 'z'): -2, ('y', 'z'): -2, ('z', 'z'): 3}
>>> response = sampler.sample_qubo(Q, num_reads=10)
>>> for sample in response.samples():
... print(sample)
...
{'y': 0, 'x': 1, 'z': 0}
{'y': 1, 'x': 0, 'z': 0}
{'y': 1, 'x': 0, 'z': 0}
{'y': 1, 'x': 1, 'z': 1}
{'y': 0, 'x': 1, 'z': 0}
{'y': 1, 'x': 0, 'z': 0}
{'y': 0, 'x': 1, 'z': 0}
{'y': 0, 'x': 1, 'z': 0}
{'y': 0, 'x': 0, 'z': 0}
{'y': 1, 'x': 0, 'z': 0}

Sampler Properties

VirtualGraphComposite.properties dict – Properties in the form of a dict.
VirtualGraphComposite.parameters dict[str, list] – Parameters in the form of a dict.

30 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera

dwave-system Documentation, Release 0.3.2

dwave.system.composites.VirtualGraphComposite.properties

VirtualGraphComposite.properties = None
dict – Properties in the form of a dict.

For an instantiated composed sampler, contains one key 'child_properties' that has a copy of the child
sampler’s properties.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler that uses a D-Wave solver
selected by the user’s default D-Wave Cloud Client configuration file and views the composed sampler’s prop-
erties.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.properties
{'child_properties': {u'anneal_offset_ranges': [[-0.2197463755538704,

0.03821687759418928],
[-0.2242514597680286, 0.01718456460967399],
[-0.20860153999435985, 0.05511969218508182],
[-0.2108920134230625, 0.056392603743884134],

>>> # Snipped above response for brevity

dwave.system.composites.VirtualGraphComposite.parameters

VirtualGraphComposite.parameters = None
dict[str, list] – Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters accepted by the child sampler with an
additional parameter, ‘apply_flux_bias_offsets’.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler that uses a D-Wave solver
selected by the user’s default D-Wave Cloud Client configuration file and views the composed sampler’s param-
eters.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.parameters
{u'anneal_offsets': ['parameters'],
u'anneal_schedule': ['parameters'],
u'annealing_time': ['parameters'],
u'answer_mode': ['parameters'],
'apply_flux_bias_offsets': [],
u'auto_scale': ['parameters'],

>>> # Snipped above response for brevity

1.1. Reference Documentation 31

http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

Composite Properties

VirtualGraphComposite.children list – List containing the FixedEmbeddingComposite-
wrapped sampler.

VirtualGraphComposite.child First child in children.

dwave.system.composites.VirtualGraphComposite.children

VirtualGraphComposite.children = None
list – List containing the FixedEmbeddingComposite-wrapped sampler.

dwave.system.composites.VirtualGraphComposite.child

VirtualGraphComposite.child
First child in children.

Examples

This example pseudocode defines a composed sampler that uses the first supported sampler in a composite’s list
of samplers on a binary quadratic model.

class MyComposedSampler(Sampler, Composite):

children = None
parameters = None
properties = None

def __init__(self, child):
self.children = [child]

self.parameters = child.parameters.copy() # propagate parameters
self.parameters['my_additional_parameter'] = []

self.properties = child.properties.copy() # propagate properties

Implementation of the composite's functionality
def sample(self, bqm, my_additional_parameter, **kwargs):

Overwrite the abstract sample method.
Additional parameters must have defaults

Samples are obtained from the sampler by using the `child` property:
response = self.child.sample(bqm, **kwargs)

raise NotImplementedError

Structured Sampler Properties

VirtualGraphComposite.nodelist list – Nodes available to the composed sampler.
VirtualGraphComposite.edgelist list – Edges available to the composed sampler.

Continued on next page

32 Chapter 1. Documentation

dwave-system Documentation, Release 0.3.2

Table 17 – continued from previous page
VirtualGraphComposite.adjacency dict[variable, set] – Adjacency structure for the com-

posed sampler.
VirtualGraphComposite.structure Structure of the structured sampler formatted as

a namedtuple Structure(nodelist,
edgelist, adjacency), where the 3-tuple
values are the nodelist and edgelist properties
and adjacency() method.

dwave.system.composites.VirtualGraphComposite.nodelist

VirtualGraphComposite.nodelist = None
list – Nodes available to the composed sampler.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler that uses a D-Wave solver
selected by the user’s default D-Wave Cloud Client configuration file. Because qubits 0, 1, 4, 5 are active on the
selected D-Wave solver, the three nodes, x, y, and z, specified by the embedding, are all available to problems
using this composed sampler.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.nodelist
['x', 'y', 'z']

dwave.system.composites.VirtualGraphComposite.edgelist

VirtualGraphComposite.edgelist = None
list – Edges available to the composed sampler.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler that uses a D-Wave solver
selected by the user’s default D-Wave Cloud Client configuration file. Because qubits 0, 5, and coupled qubits
{0, 4} are all coupled on the selected D-Wave solver, edges between three nodes, x, y, and z, as specified by the
embedding, are available to problems using this composed sampler. However, qubit 8 is in an adjacent unit cell
on the D-Wave solver and not directly connected to the other four qubits, so node a does not share an edge with
any other nodes.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}, 'a': {8}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.edgelist
[('x', 'y'), ('x', 'z'), ('y', 'z')]

1.1. Reference Documentation 33

http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

dwave.system.composites.VirtualGraphComposite.adjacency

VirtualGraphComposite.adjacency = None
dict[variable, set] – Adjacency structure for the composed sampler.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler that uses a D-Wave solver
selected by the user’s default D-Wave Cloud Client configuration file. Because qubits 0, 5, and coupled qubits
{0, 4} are all coupled on the selected D-Wave solver, edges between three nodes, x, y, and z, as specified by the
embedding, are available to problems using this composed sampler. However, qubit 8 is in an adjacent unit cell
on the D-Wave solver and not directly connected to the other four qubits, so node a does not share an edge with
any other nodes.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}, 'a': {8}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.adjacency
{'a': set(), 'x': {'y', 'z'}, 'y': {'x', 'z'}, 'z': {'x', 'y'}}

dwave.system.composites.VirtualGraphComposite.structure

VirtualGraphComposite.structure
Structure of the structured sampler formatted as a namedtuple Structure(nodelist, edgelist,
adjacency), where the 3-tuple values are the nodelist and edgelist properties and adjacency()
method.

Examples

This example shows the structure of a placeholder structured sampler that samples only from the K3 complete
graph, where each of the three nodes connects to all the other nodes.

>>> class K3StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (2, 3)]
>>> K3sampler = K3StructuredClass()
>>> K3sampler.structure.edgelist
[(1, 2), (1, 3), (2, 3)]

Methods

34 Chapter 1. Documentation

http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config

dwave-system Documentation, Release 0.3.2

VirtualGraphComposite.sample(bqm,
**kwargs)

Sample from the given Ising model.

VirtualGraphComposite.sample_ising(h,
J, . . .)

Samples from an Ising model using an implemented
sample method.

VirtualGraphComposite.sample_qubo(Q,
. . .)

Samples from a QUBO using an implemented sample
method.

dwave.system.composites.VirtualGraphComposite.sample

VirtualGraphComposite.sample(bqm, **kwargs)
Sample from the given Ising model.

Parameters

• h (list/dict) – Linear biases of the Ising model. If a list, the list’s indices are used as
variable labels.

• J (dict of (int, int) – float): Quadratic biases of the Ising model.

• apply_flux_bias_offsets (bool, optional) – If True, use the calculated
flux_bias offsets (if available).

• **kwargs – Optional keyword arguments for the sampling method, specified per solver.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler that submits an Ising prob-
lem to a D-Wave solver selected by the user’s default D-Wave Cloud Client configuration file. The problem rep-
resents a logical NOT gate using penalty function 𝑃 = 𝑥𝑦, where variable x is the gate’s input and y the output.
This simple two-variable problem is manually minor-embedded to a single Chimera unit cell: each variable is
represented by a chain of half the cell’s qubits, x as qubits 0, 1, 4, 5, and y as qubits 2, 3, 6, 7. The chain strength
is set to half the maximum allowed found from querying the solver’s extended J range. In this example, the ten
returned samples all represent valid states of the NOT gate.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {0, 4, 1, 5}, 'y': {2, 6, 3, 7}}
>>> DWaveSampler().properties['extended_j_range']
[-2.0, 1.0]
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding, chain_strength=1)
>>> h = {}
>>> J = {('x', 'y'): 1}
>>> response = sampler.sample_ising(h, J, num_reads=10)
>>> for sample in response.samples():
... print(sample)
...
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}

1.1. Reference Documentation 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config
http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera

dwave-system Documentation, Release 0.3.2

dwave.system.composites.VirtualGraphComposite.sample_ising

VirtualGraphComposite.sample_ising(h, J, **parameters)
Samples from an Ising model using an implemented sample method.

Examples

This example implements a placeholder QUBO sampler and samples using the mixin Ising sampler.

>>> import dimod
>>> class ImplementQuboSampler(dimod.Sampler):
... def sample_qubo(self, Q):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}
→˓) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementQuboSampler()
>>> h = {1: 0.5, 2: -1, 3: -0.75}
>>> J = {}
>>> response = sampler.sample_ising(h, J)
>>> print(response)
[[-1 1]]

dwave.system.composites.VirtualGraphComposite.sample_qubo

VirtualGraphComposite.sample_qubo(Q, **parameters)
Samples from a QUBO using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using the mixin QUBO sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}
→˓) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> Q = {(0, 0): -0.5, (0, 1): 1, (1, 1): -0.75}
>>> response = sampler.sample_qubo(Q)

(continues on next page)

36 Chapter 1. Documentation

dwave-system Documentation, Release 0.3.2

(continued from previous page)

>>> print(response)
[[0 1]]

1.2 Installation

Installation from PyPI:

pip install dwave-system

Installation from PyPI with drivers:

Note: Prior to v0.3.0, running pip install dwave-system installed a driver dependency called
dwave-system-tuning. This dependency has a restricted license and has been made optional as of v0.3.0, but is
highly recommanded. To view the license details:

from dwave.system.tuning import __license__
print(__license__)

To install with optional dependencies:

pip install dwave-system[drivers] --extra-index-url https://pypi.dwavesys.com/simple

Installation from source:

pip install -r requirements.txt
python setup.py

Note that installing from source installs dwave-system-tuning. To uninstall the proprietary components:

pip uninstall dwave-system-tuning

1.3 License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether

1.2. Installation 37

http://www.apache.org/licenses/

dwave-system Documentation, Release 0.3.2

by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

38 Chapter 1. Documentation

dwave-system Documentation, Release 0.3.2

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

1.3. License 39

dwave-system Documentation, Release 0.3.2

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

1.4 D-Wave

D-Wave Systems is the leader in the development and delivery of quantum computing systems and software, and the
world’s only commercial supplier of quantum computers.

Learn more about D-Wave at D-Wave Systems.

1.5 Ocean Overview

D-Wave Ocean includes various projects/repositories on GitHub that help solve problems on the D-Wave system.

Learn about D-Wave’s Ocean and how its projects work together at D-Wave Ocean on Read the Docs.

1.6 Contributing to Ocean

D-Wave welcomes contributions to Ocean projects.

See how to contribute at Ocean Contributors.

1.7 Glossary

The field of quantum computing has many domain-specific terms.

Learn the relevant terminology at Ocean Glossary.

40 Chapter 1. Documentation

http://www.apache.org/licenses/LICENSE-2.0
https://www.dwavesys.com
https://www.dwavesys.com
http://dw-docs.readthedocs.io/en/latest/index.html
http://dw-docs.readthedocs.io/en/latest/index.html
http://dw-docs.readthedocs.io/en/latest/CONTRIBUTING.html
http://dw-docs.readthedocs.io/en/latest/glossary.html

Python Module Index

d
dwave.system.composites.embedding, 12
dwave.system.composites.tiling, 21
dwave.system.composites.virtual_graph,

29
dwave.system.samplers.dwave_sampler, 4

41

dwave-system Documentation, Release 0.3.2

42 Python Module Index

Index

A
adjacency (DWaveSampler attribute), 9
adjacency (FixedEmbeddingComposite attribute), 19
adjacency (TilingComposite attribute), 26
adjacency (VirtualGraphComposite attribute), 34

C
child (EmbeddingComposite attribute), 14
child (FixedEmbeddingComposite attribute), 18
child (TilingComposite attribute), 24
child (VirtualGraphComposite attribute), 32
children (EmbeddingComposite attribute), 14
children (FixedEmbeddingComposite attribute), 18
children (TilingComposite attribute), 24
children (VirtualGraphComposite attribute), 32

D
dwave.system.composites.embedding (module), 12
dwave.system.composites.tiling (module), 21
dwave.system.composites.virtual_graph (module), 29
dwave.system.samplers.dwave_sampler (module), 4
DWaveSampler (class in dwave.system.samplers), 4

E
edgelist (DWaveSampler attribute), 8
edgelist (FixedEmbeddingComposite attribute), 19
edgelist (TilingComposite attribute), 25
edgelist (VirtualGraphComposite attribute), 33
EmbeddingComposite (class in

dwave.system.composites), 12

F
FixedEmbeddingComposite (class in

dwave.system.composites), 17

N
nodelist (DWaveSampler attribute), 8
nodelist (FixedEmbeddingComposite attribute), 19
nodelist (TilingComposite attribute), 25

nodelist (VirtualGraphComposite attribute), 33

P
parameters (DWaveSampler attribute), 7
parameters (EmbeddingComposite attribute), 13
parameters (FixedEmbeddingComposite attribute), 17
parameters (TilingComposite attribute), 23
parameters (VirtualGraphComposite attribute), 31
properties (DWaveSampler attribute), 7
properties (EmbeddingComposite attribute), 13
properties (FixedEmbeddingComposite attribute), 17
properties (TilingComposite attribute), 23
properties (VirtualGraphComposite attribute), 31

S
sample() (DWaveSampler method), 10
sample() (EmbeddingComposite method), 15
sample() (FixedEmbeddingComposite method), 20
sample() (TilingComposite method), 27
sample() (VirtualGraphComposite method), 35
sample_ising() (DWaveSampler method), 10
sample_ising() (EmbeddingComposite method), 16
sample_ising() (FixedEmbeddingComposite method), 20
sample_ising() (TilingComposite method), 28
sample_ising() (VirtualGraphComposite method), 36
sample_qubo() (DWaveSampler method), 11
sample_qubo() (EmbeddingComposite method), 16
sample_qubo() (FixedEmbeddingComposite method), 21
sample_qubo() (TilingComposite method), 29
sample_qubo() (VirtualGraphComposite method), 36
structure (DWaveSampler attribute), 9
structure (FixedEmbeddingComposite attribute), 19
structure (TilingComposite attribute), 27
structure (VirtualGraphComposite attribute), 34

T
TilingComposite (class in dwave.system.composites), 21

43

dwave-system Documentation, Release 0.3.2

V
VirtualGraphComposite (class in

dwave.system.composites), 29

44 Index

	Documentation
	Python Module Index

