

 Note: This is an alpha release of this package.

dwave-system

dwave-system is a basic API for easily incorporating the D-Wave system as a sampler in
the D-Wave Ocean [http://dw-docs.readthedocs.io/en/latest/overview/stack.html#stack] software
stack. It includes DWaveSampler, a dimod.Sampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler]
that accepts and passes system parameters such as system identification and authentication
down the stack. It also includes several useful composites—layers of pre- and post-processing—that
can be used with DWaveSampler to handle minor-embedding, optimize chain strength, etc.

Documentation

	Release

	0.3.2

	Date

	Jun 22, 2018

	Reference Documentation

	Installation

	License

D-Wave's Ocean Software

	D-Wave

	Ocean Overview

	Contributing to Ocean

	Glossary

Reference Documentation

	Release

	0.3.2

	Date

	Jun 22, 2018

	Introduction
	Samplers

	Composites

	D-Wave System Architecture: Chimera

	Minor-Embedding

	Samplers
	D-Wave Sampler

	Composites
	EmbeddingComposite

	FixedEmbeddingComposite

	TilingComposite

	VirtualGraphComposite

Introduction

Samplers

Samplers are processes that sample from low energy states of a problem’s objective function.
A binary quadratic model (BQM) sampler samples from low energy states in models such as those
defined by an Ising equation or a Quadratic Unconstrained Binary Optimization (QUBO) problem
and returns an iterable of samples, in order of increasing energy. A
dimod sampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#samplers-and-composites]
provides ‘sample_qubo’ and ‘sample_ising’ methods as well as the generic BQM sampler method.

Composites

Samplers can be composed. The composite pattern [https://en.wikipedia.org/wiki/Composite_pattern]
allows layers of pre- and post-processing to be applied to binary quadratic programs without needing
to change the underlying sampler implementation.

We refer to these layers as composites. A composed sampler includes at least one sampler
and possibly many composites.

D-Wave System Architecture: Chimera

The D-Wave system is Chimera-structured.

The Chimera architecture comprises sets of connected unit cells, each with four
horizontal qubits connected to four vertical qubits via couplers (bipartite
connectivity). Unit cells are tiled vertically and horizontally with adjacent
qubits connected, creating a lattice of sparsely connected qubits. A unit cell
is typically rendered as either a cross or a column.

[image: Chimera unit cell.]
Chimera unit cell.

[image: Chimera graph. qubits are arranged in unit cells that form bipartite connections.]
A \(3 {\rm x} 3\) Chimera graph, denoted C3. Qubits are arranged in 9 unit cells.

Minor-Embedding

To solve an arbitrarily posed binary quadratic problem on a D-Wave system requires mapping,
called minor embedding, to a Chimera graph that represents the system’s quantum processing unit.
This preprocessing can be done by a composed sampler consisting of the DWaveSampler
and a composite that performs minor-embedding.

Samplers

dwave-system provides dimod samplers for using the D-Wave system.

	Release

	0.3.2

	Date

	Jun 22, 2018

	D-Wave Sampler
	Class

	Sampler Properties

	Structured Sampler Properties

	Methods

D-Wave Sampler

A dimod sampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#samplers-and-composites] for the D-Wave system.

Class

	
class DWaveSampler(config_file=None, profile=None, endpoint=None, token=None, solver=None, proxy=None, permissive_ssl=False)

	A class for using the D-Wave system as a sampler.

Inherits from dimod.Sampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler] and dimod.Structured [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Structured].

Enables quick incorporation of the D-Wave system as a sampler in
the D-Wave Ocean software stack. Also enables optional customizing of input
parameters to D-Wave Cloud Client [http://dwave-cloud-client.readthedocs.io/en/latest/]
(the stack’s communication-manager package).

	Parameters

	
	config_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Path to a D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file that identifies a
D-Wave system and provides connection information.

	profile (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Profile to select from a D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – D-Wave API endpoint URL. If specified, used instead of retrieving a value from
a D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

	token (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Authentication token for the D-Wave API to authenticate the client session.
If specified, used instead of retrieving a value from a D-Wave Cloud Client
configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

	solver (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Solver (a D-Wave system on which to run submitted problems).
If specified, used instead of retrieving a value from a D-Wave Cloud Client
configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

	proxy (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Proxy URL to be used for accessing the D-Wave API. If specified, used instead of
retrieving a value from a D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

Examples

This example creates a DWaveSampler based on a fictive user’s D-Wave Cloud Client
configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file and submits a simple Ising problem of just two variables
that map to qubits 0 and 1 on the example system. (The simplicity of this example
obviates the need for an embedding composite—the presence of qubits 0 and 1 on
the selected D-Wave system can be verified manually.)

>>> # Example configuration file /home/susan/.config/dwave/dwave.conf:
>>> # [defaults]
>>> # endpoint = https://url.of.some.dwavesystem.com/sapi
>>> # client = qpu
>>> #
>>> # [dw2000]
>>> # solver = EXAMPLE_2000Q_SYSTEM
>>> # token = ABC-123456789123456789123456789
>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> response = sampler.sample_ising({0: -1, 1: 1}, {})
>>> for sample in response.samples():
... print(sample)
...
{0: 1, 1: -1}

Sampler Properties

	DWaveSampler.properties

	dict – D-Wave solver properties as returned by a SAPI query.

	DWaveSampler.parameters

	dict[str, list] – D-Wave solver parameters in the form of a dict, where keys are keyword parameters accepted by a SAPI query and values are lists of properties in DWaveSampler.properties for each key.

Structured Sampler Properties

	DWaveSampler.nodelist

	list – List of active qubits for the D-Wave solver.

	DWaveSampler.edgelist

	list – List of active couplers for the D-Wave solver.

	DWaveSampler.adjacency

	dict[variable, set] – Adjacency structure formatted as a dict, where keys are the nodes of the structured sampler and values are sets of all adjacent nodes for each key node.

	DWaveSampler.structure

	Structure of the structured sampler formatted as a namedtuple Structure(nodelist, edgelist, adjacency), where the 3-tuple values are the nodelist and edgelist properties and adjacency() method.

Methods

	DWaveSampler.sample(bqm, **parameters)

	Samples from a binary quadratic model using an implemented sample method.

	DWaveSampler.sample_ising(h, J, **kwargs)

	Sample from the provided Ising model.

	DWaveSampler.sample_qubo(Q, **kwargs)

	Sample from the provided QUBO.

dwave.system.samplers.DWaveSampler.properties

	
DWaveSampler.properties

	dict – D-Wave solver properties as returned by a SAPI query.

Solver properties are dependent on the selected D-Wave solver and subject to change;
for example, new released features may add properties.

Examples

This example creates a DWaveSampler and prints the properties retrieved
from a D-Wave solver selected by the user’s default D-Wave Cloud Client
configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.properties
{u'anneal_offset_ranges': [[-0.2197463755538704, 0.03821687759418928],
 [-0.2242514597680286, 0.01718456460967399],
 [-0.20860153999435985, 0.05511969218508182],
Snipped above response for brevity

dwave.system.samplers.DWaveSampler.parameters

	
DWaveSampler.parameters

	dict[str, list] – D-Wave solver parameters in the form of a dict, where keys are
keyword parameters accepted by a SAPI query and values are lists of properties in
DWaveSampler.properties for each key.

Solver parameters are dependent on the selected D-Wave solver and subject to change;
for example, new released features may add parameters.

Examples

This example creates a DWaveSampler and prints the parameters retrieved
from a D-Wave solver selected by the user’s default D-Wave Cloud Client
configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.parameters
{u'anneal_offsets': ['parameters'],
u'anneal_schedule': ['parameters'],
u'annealing_time': ['parameters'],
u'answer_mode': ['parameters'],
u'auto_scale': ['parameters'],
Snipped above response for brevity

dwave.system.samplers.DWaveSampler.nodelist

	
DWaveSampler.nodelist

	list – List of active qubits for the D-Wave solver.

Examples

This example creates a DWaveSampler and prints the active qubits retrieved
from a D-Wave solver selected by the user’s default D-Wave Cloud Client
configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.nodelist
[0,
 1,
 2,
 3,
 4,
 5,
Snipped above response for brevity

dwave.system.samplers.DWaveSampler.edgelist

	
DWaveSampler.edgelist

	list – List of active couplers for the D-Wave solver.

Examples

This example creates a DWaveSampler and prints the active couplers retrieved
from a D-Wave solver selected by the user’s default D-Wave Cloud Client
configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.edgelist
[(0, 4),
 (0, 5),
 (0, 6),
 (0, 7),
 (0, 128),
 (1, 4),
 (1, 5),
 (1, 6),
 (1, 7),
 (1, 129),
 (2, 4),
Snipped above response for brevity

dwave.system.samplers.DWaveSampler.adjacency

	
DWaveSampler.adjacency

	dict[variable, set] – Adjacency structure formatted as a dict, where keys are the
nodes of the structured sampler and values are sets of all adjacent nodes for
each key node.

Examples

This example shows the adjacencies for a placeholder structured sampler that
samples only from the K4 complete graph, where each of the four nodes connects
to all the other nodes.

>>> class K4StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3, 4]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
>>> K4sampler = K4StructuredClass()
>>> K4sampler.adjacency.keys()
[1, 2, 3, 4]

dwave.system.samplers.DWaveSampler.structure

	
DWaveSampler.structure

	Structure of the structured sampler formatted as a namedtuple
Structure(nodelist, edgelist, adjacency), where the 3-tuple values are
the nodelist and edgelist properties
and adjacency() method.

Examples

This example shows the structure of a placeholder structured sampler that
samples only from the K3 complete graph, where each of the three nodes connects
to all the other nodes.

>>> class K3StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (2, 3)]
>>> K3sampler = K3StructuredClass()
>>> K3sampler.structure.edgelist
[(1, 2), (1, 3), (2, 3)]

dwave.system.samplers.DWaveSampler.sample

	
DWaveSampler.sample(bqm, **parameters)

	Samples from a binary quadratic model using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using
the mixin binary quadratic model sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> model = dimod.BinaryQuadraticModel({0: 1, 1: -1, 2: .5},
... {(0, 1): .5, (1, 2): 1.5},
... 1.4,
... dimod.SPIN)
>>> response = sampler.sample(model)
>>> print(response)
[[-1 1]]

dwave.system.samplers.DWaveSampler.sample_ising

	
DWaveSampler.sample_ising(h, J, **kwargs)

	Sample from the provided Ising model.

	Parameters

	
	h (list/dict) – Linear biases of the Ising model. If a list, the list’s indices are
used as variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]) – float]):
Quadratic biases of the Ising model.

	**kwargs – Optional keyword arguments for the sampling method, specified per solver in
DWaveSampler.parameters

	Returns

	dimod.Response [http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response]

Examples

This example creates a DWaveSampler based on a D-Wave solver selected by the
user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file and submits a simple
Ising problem of just two variables that map to qubits 0 and 1 on the example
system. (The simplicity of this example obviates the need for an embedding
composite—the presence of qubits 0 and 1 on the selected D-Wave system can
be verified manually.)

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> response = sampler.sample_ising({0: -1, 1: 1}, {})
>>> for sample in response.samples():
... print(sample)
...
{0: 1, 1: -1}

dwave.system.samplers.DWaveSampler.sample_qubo

	
DWaveSampler.sample_qubo(Q, **kwargs)

	Sample from the provided QUBO.

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization (QUBO) model.

	**kwargs – Optional keyword arguments for the sampling method, specified per solver in
DWaveSampler.parameters

	Returns

	dimod.Response [http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response]

Examples

This example creates a DWaveSampler based on a D-Wave solver selected by the
user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file and submits a simple
QUBO problem of just two variables that map to coupled qubits 0 and 4 on the
example system. (The simplicity of this example obviates the need for an embedding
composite—the presence of qubits 0 and 4, and their coupling, on the selected
D-Wave system can be verified manually.)

>>> from dwave.system.samplers import DWaveSampler
>>> sampler = DWaveSampler()
>>> Q = {(0, 0): -1, (4, 4): -1, (0, 4): 2}
>>> response = sampler.sample_qubo(Q)
>>> for sample in response.samples():
... print(sample)
...
{0: 0, 4: 1}

Composites

dwave-system provides
dimod composites [http://dimod.readthedocs.io/en/latest/reference/samplers.html#samplers-and-composites]
for using the D-Wave system.

	Release

	0.3.2

	Date

	Jun 22, 2018

	EmbeddingComposite
	Class

	Sampler Properties

	Composite Properties

	Methods

	FixedEmbeddingComposite
	Class

	Sampler Properties

	Composite Properties

	Structured Sampler Properties

	Methods

	TilingComposite
	Class

	Sampler Properties

	Composite Properties

	Structured Sampler Properties

	Methods

	VirtualGraphComposite
	Class

	Sampler Properties

	Composite Properties

	Structured Sampler Properties

	Methods

EmbeddingComposite

Class

A dimod composite [http://dimod.readthedocs.io/en/latest/reference/samplers.html] that maps unstructured problems to a structured [http://dimod.readthedocs.io/en/latest/reference/samplers.html#module-dimod.core.structured] sampler.

A structured [http://dimod.readthedocs.io/en/latest/reference/samplers.html#module-dimod.core.structured] sampler can only solve problems that map to a specific graph: the
D-Wave system’s architecture is represented by a Chimera [http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera] graph.

The EmbeddingComposite uses the minorminer [https://github.com/dwavesystems/minorminer] library to map unstructured
problems to a structured sampler such as a D-Wave system.

	
class EmbeddingComposite(child_sampler)

	Composite to map unstructured problems to a structured sampler.

Inherits from dimod.ComposedSampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.ComposedSampler].

Enables quick incorporation of the D-Wave system as a sampler in the D-Wave Ocean
software stack by handling the minor-embedding of the problem into the D-Wave
system’s Chimera graph.

	Parameters

	sampler (dimod.Sampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler]) – Structured dimod sampler.

Examples

This example uses EmbeddingComposite to instantiate a composed sampler
that submits a simple Ising problem to a D-Wave solver selected by the user’s
default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file. The composed sampler handles
minor-embedding of the problem’s two generic variables, a and b, to physical
qubits on the solver.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> h = {'a': -1., 'b': 2}
>>> J = {('a', 'b'): 1.5}
>>> response = sampler.sample_ising(h, J)
>>> for sample in response.samples():
... print(sample)
...
{'a': 1, 'b': -1}

Sampler Properties

	EmbeddingComposite.properties

	dict – Properties in the form of a dict.

	EmbeddingComposite.parameters

	dict[str, list] – Parameters in the form of a dict.

Composite Properties

	EmbeddingComposite.children

	list – Children property inherited from dimod.Composite [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Composite] class.

	EmbeddingComposite.child

	First child in children.

Methods

	EmbeddingComposite.sample(bqm[, chain_strength])

	Sample from the provided binary quadratic model.

	EmbeddingComposite.sample_ising(h, J, …)

	Samples from an Ising model using an implemented sample method.

	EmbeddingComposite.sample_qubo(Q, **parameters)

	Samples from a QUBO using an implemented sample method.

dwave.system.composites.EmbeddingComposite.properties

	
EmbeddingComposite.properties

	dict – Properties in the form of a dict.

For an instantiated composed sampler, contains one key 'child_properties' that
has a copy of the child sampler’s properties.

Examples

This example instantiates a composed sampler using a D-Wave solver selected by
the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file and views the
solver’s properties.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> sampler.properties
{'child_properties': {u'anneal_offset_ranges': [[-0.2197463755538704,
 0.03821687759418928],
 [-0.2242514597680286, 0.01718456460967399],
 [-0.20860153999435985, 0.05511969218508182],
>>> # Snipped above response for brevity

dwave.system.composites.EmbeddingComposite.parameters

	
EmbeddingComposite.parameters

	dict[str, list] – Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters accepted by the child sampler.

Examples

This example instantiates a composed sampler using a D-Wave solver selected by
the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file and views the
solver’s parameters.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> sampler.parameters
{'anneal_offsets': ['parameters'],
 'anneal_schedule': ['parameters'],
 'annealing_time': ['parameters'],
 'answer_mode': ['parameters'],
 'auto_scale': ['parameters'],
>>> # Snipped above response for brevity

dwave.system.composites.EmbeddingComposite.children

	
EmbeddingComposite.children

	list – Children property inherited from dimod.Composite [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Composite] class.

For an instantiated composed sampler, contains the single wrapped structured sampler.

Examples

This example instantiates a composed sampler using a D-Wave solver selected by
the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file and views the
solver’s parameters.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> sampler.children
[<dwave.system.samplers.dwave_sampler.DWaveSampler at 0x7f45b20a8d50>]

dwave.system.composites.EmbeddingComposite.child

	
EmbeddingComposite.child

	First child in children.

Examples

This example pseudocode defines a composed sampler that uses the first supported
sampler in a composite’s list of samplers on a binary quadratic model.

class MyComposedSampler(Sampler, Composite):

 children = None
 parameters = None
 properties = None

 def __init__(self, child):
 self.children = [child]

 self.parameters = child.parameters.copy() # propagate parameters
 self.parameters['my_additional_parameter'] = []

 self.properties = child.properties.copy() # propagate properties

 # Implementation of the composite's functionality
 def sample(self, bqm, my_additional_parameter, **kwargs):
 # Overwrite the abstract sample method.
 # Additional parameters must have defaults

 # Samples are obtained from the sampler by using the `child` property:
 # response = self.child.sample(bqm, **kwargs)

 raise NotImplementedError

dwave.system.composites.EmbeddingComposite.sample

	
EmbeddingComposite.sample(bqm, chain_strength=1.0, **parameters)

	Sample from the provided binary quadratic model.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel [http://dimod.readthedocs.io/en/latest/reference/binary_quadratic_model.html#dimod.BinaryQuadraticModel]) – Binary quadratic model to be sampled from.

	chain_strength (float [https://docs.python.org/3/library/functions.html#float], optional, default=1.0) – Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
chains. Note that the energy penalty of chain breaks is 2 * chain_strength.

	**parameters – Parameters for the sampling method, specified by the child sampler.

	Returns

	dimod.Response [http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response]

Examples

This example uses EmbeddingComposite to instantiate a composed sampler
that submits an unstructured Ising problem to a D-Wave solver, selected by the user’s
default D-Wave Cloud Client configuration_ file, while minor-embedding the problem’s
variables to physical qubits on the solver.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> import dimod
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> h = {1: 1, 2: 2, 3: 3, 4: 4}
>>> J = {(1, 2): 12, (1, 3): 13, (1, 4): 14,
... (2, 3): 23, (2, 4): 24,
... (3, 4): 34}
>>> bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
>>> response = sampler.sample(bqm)
>>> for sample in response.samples():
... print(sample)
...
{1: -1, 2: 1, 3: 1, 4: -1}

dwave.system.composites.EmbeddingComposite.sample_ising

	
EmbeddingComposite.sample_ising(h, J, **parameters)

	Samples from an Ising model using an implemented sample method.

Examples

This example implements a placeholder QUBO sampler and samples using
the mixin Ising sampler.

>>> import dimod
>>> class ImplementQuboSampler(dimod.Sampler):
... def sample_qubo(self, Q):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementQuboSampler()
>>> h = {1: 0.5, 2: -1, 3: -0.75}
>>> J = {}
>>> response = sampler.sample_ising(h, J)
>>> print(response)
[[-1 1]]

dwave.system.composites.EmbeddingComposite.sample_qubo

	
EmbeddingComposite.sample_qubo(Q, **parameters)

	Samples from a QUBO using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using
the mixin QUBO sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> Q = {(0, 0): -0.5, (0, 1): 1, (1, 1): -0.75}
>>> response = sampler.sample_qubo(Q)
>>> print(response)
[[0 1]]

FixedEmbeddingComposite

Class

	
class FixedEmbeddingComposite(child_sampler, embedding)

	Composite to alter the structure of a child sampler via an embedding.

Inherits from dimod.ComposedSampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.ComposedSampler] and dimod.Structured [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Structured].

	Parameters

	
	sampler (dimod.Sampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler]) – Structured dimod sampler.

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict][hashable, iterable]) – Mapping from a source graph to the specified sampler’s graph (the target graph).

Examples

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import FixedEmbeddingComposite
...
>>> sampler = FixedEmbeddingComposite(DWaveSampler(), {'a': [0, 4], 'b': [1, 5], 'c': [2, 6]})
>>> sampler.nodelist
['a', 'b', 'c']
>>> sampler.edgelist
[('a', 'b'), ('a', 'c'), ('b', 'c')]
>>> resp = sampler.sample_ising({'a': .5, 'c': 0}, {('a', 'c'): -1})

Sampler Properties

	FixedEmbeddingComposite.properties

	dict – Properties in the form of a dict.

	FixedEmbeddingComposite.parameters

	dict[str, list] – Parameters in the form of a dict.

Composite Properties

	FixedEmbeddingComposite.children

	list – List containing the wrapped sampler.

	FixedEmbeddingComposite.child

	First child in children.

Structured Sampler Properties

	FixedEmbeddingComposite.nodelist

	list – Nodes available to the composed sampler.

	FixedEmbeddingComposite.edgelist

	list – Edges available to the composed sampler.

	FixedEmbeddingComposite.adjacency

	dict[variable, set] – Adjacency structure for the composed sampler.

	FixedEmbeddingComposite.structure

	Structure of the structured sampler formatted as a namedtuple Structure(nodelist, edgelist, adjacency), where the 3-tuple values are the nodelist and edgelist properties and adjacency() method.

Methods

	FixedEmbeddingComposite.sample(bqm, **kwargs)

	Sample from the provided binary quadratic model.

	FixedEmbeddingComposite.sample_ising(h, J, …)

	Samples from an Ising model using an implemented sample method.

	FixedEmbeddingComposite.sample_qubo(Q, …)

	Samples from a QUBO using an implemented sample method.

dwave.system.composites.FixedEmbeddingComposite.properties

	
FixedEmbeddingComposite.properties = None

	dict – Properties in the form of a dict.

For an instantiated composed sampler, 'child_properties' has a copy of the child
sampler’s properties and 'embedding' contains the fixed embedding.

dwave.system.composites.FixedEmbeddingComposite.parameters

	
FixedEmbeddingComposite.parameters = None

	dict[str, list] – Parameters in the form of a dict.

The same as the child sampler with the addition of ‘chain_strength’

dwave.system.composites.FixedEmbeddingComposite.children

	
FixedEmbeddingComposite.children = None

	list – List containing the wrapped sampler.

dwave.system.composites.FixedEmbeddingComposite.child

	
FixedEmbeddingComposite.child

	First child in children.

Examples

This example pseudocode defines a composed sampler that uses the first supported
sampler in a composite’s list of samplers on a binary quadratic model.

class MyComposedSampler(Sampler, Composite):

 children = None
 parameters = None
 properties = None

 def __init__(self, child):
 self.children = [child]

 self.parameters = child.parameters.copy() # propagate parameters
 self.parameters['my_additional_parameter'] = []

 self.properties = child.properties.copy() # propagate properties

 # Implementation of the composite's functionality
 def sample(self, bqm, my_additional_parameter, **kwargs):
 # Overwrite the abstract sample method.
 # Additional parameters must have defaults

 # Samples are obtained from the sampler by using the `child` property:
 # response = self.child.sample(bqm, **kwargs)

 raise NotImplementedError

dwave.system.composites.FixedEmbeddingComposite.nodelist

	
FixedEmbeddingComposite.nodelist = None

	list – Nodes available to the composed sampler.

dwave.system.composites.FixedEmbeddingComposite.edgelist

	
FixedEmbeddingComposite.edgelist = None

	list – Edges available to the composed sampler.

dwave.system.composites.FixedEmbeddingComposite.adjacency

	
FixedEmbeddingComposite.adjacency = None

	dict[variable, set] – Adjacency structure for the composed sampler.

dwave.system.composites.FixedEmbeddingComposite.structure

	
FixedEmbeddingComposite.structure

	Structure of the structured sampler formatted as a namedtuple
Structure(nodelist, edgelist, adjacency), where the 3-tuple values are
the nodelist and edgelist properties
and adjacency() method.

Examples

This example shows the structure of a placeholder structured sampler that
samples only from the K3 complete graph, where each of the three nodes connects
to all the other nodes.

>>> class K3StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (2, 3)]
>>> K3sampler = K3StructuredClass()
>>> K3sampler.structure.edgelist
[(1, 2), (1, 3), (2, 3)]

dwave.system.composites.FixedEmbeddingComposite.sample

	
FixedEmbeddingComposite.sample(bqm, **kwargs)

	Sample from the provided binary quadratic model.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel [http://dimod.readthedocs.io/en/latest/reference/binary_quadratic_model.html#dimod.BinaryQuadraticModel]) – Binary quadratic model to be sampled from.

	chain_strength (float [https://docs.python.org/3/library/functions.html#float], optional, default=1.0) – Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
chains. Note that the energy penalty of chain breaks is 2 * chain_strength.

	**parameters – Parameters for the sampling method, specified by the child sampler.

	Returns

	dimod.Response [http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response]

Examples

This example uses FixedEmbeddingComposite to instantiate a composed sampler
that submits an unstructured Ising problem to a D-Wave solver, selected by the user’s
default D-Wave Cloud Client configuration_ file, while minor-embedding the problem’s
variables to physical qubits on the solver.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import FixedEmbeddingComposite
>>> import dimod
>>> sampler = FixedEmbeddingComposite(DWaveSampler(), {'a': [0, 4], 'b': [1, 5], 'c': [2, 6]})
>>> resp = sampler.sample_ising({'a': .5, 'c': 0}, {('a', 'c'): -1})

dwave.system.composites.FixedEmbeddingComposite.sample_ising

	
FixedEmbeddingComposite.sample_ising(h, J, **parameters)

	Samples from an Ising model using an implemented sample method.

Examples

This example implements a placeholder QUBO sampler and samples using
the mixin Ising sampler.

>>> import dimod
>>> class ImplementQuboSampler(dimod.Sampler):
... def sample_qubo(self, Q):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementQuboSampler()
>>> h = {1: 0.5, 2: -1, 3: -0.75}
>>> J = {}
>>> response = sampler.sample_ising(h, J)
>>> print(response)
[[-1 1]]

dwave.system.composites.FixedEmbeddingComposite.sample_qubo

	
FixedEmbeddingComposite.sample_qubo(Q, **parameters)

	Samples from a QUBO using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using
the mixin QUBO sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> Q = {(0, 0): -0.5, (0, 1): 1, (1, 1): -0.75}
>>> response = sampler.sample_qubo(Q)
>>> print(response)
[[0 1]]

TilingComposite

Class

A dimod composite [http://dimod.readthedocs.io/en/latest/reference/samplers.html] that tiles small problems multiple times to a Chimera-structured sampler.

The TilingComposite takes a problem that can fit on a small Chimera [http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera] graph
and replicates it across a larger Chimera graph to obtain samples from multiple areas
of the solver in one call. For example, a 2x2 Chimera lattice could be tiled 64 times
(8x8) on a fully-yielded D-Wave 2000Q system (16x16).

	
class TilingComposite(sampler, sub_m, sub_n, t=4)

	Composite to tile a small problem across a Chimera-structured sampler.

Inherits from dimod.Sampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler], dimod.Composite [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Composite], and dimod.Structured [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Structured].

Enables parallel sampling for small problems (problems that are minor-embeddable in
a small part of a D-Wave solver’s Chimera [http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera] graph).

The notation CN refers to a Chimera graph consisting of an NxN grid of unit cells.
Each Chimera unit cell is itself a bipartite graph with shores of size t. The D-Wave 2000Q QPU
supports a C16 Chimera graph: its 2048 qubits are logically mapped into a 16x16 matrix of
unit cell of 8 qubits (t=4).

A problem that can be minor-embedded in a single unit cell, for example, can therefore
be tiled across the unit cells of a D-Wave 2000Q as 16x16 duplicates. This enables
sampling 256 solutions in a single call.

	Parameters

	
	sampler (dimod.Sampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler]) – Structured dimod sampler to be wrapped.

	sub_m (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows of Chimera unit cells for minor-embedding the problem once.

	sub_n (int [https://docs.python.org/3/library/functions.html#int]) – Number of columns of Chimera unit cells for minor-embedding the problem once.

	t (int [https://docs.python.org/3/library/functions.html#int], optional, default=4) – Size of the shore within each Chimera unit cell.

Examples

This example instantiates a composed sampler using composite TilingComposite
to tile a QUBO problem on a D-Wave solver, embedding it with composite
EmbeddingComposite and selecting the D-Wave solver with the user’s
default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file. The two-variable QUBO represents a
logical NOT gate (two nodes with biases of -1 that are coupled with strength 2) and is
easily minor-embedded in a single Chimera cell (it needs only any two coupled qubits) and
so can be tiled multiple times across a D-Wave solver for parallel solution (the two
nodes should typically have opposite values).

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite
>>> from dwave.system.composites import TilingComposite
>>> sampler = EmbeddingComposite(TilingComposite(DWaveSampler(), 1, 1, 4))
>>> Q = {(1, 1): -1, (1, 2): 2, (2, 1): 0, (2, 2): -1}
>>> response = sampler.sample_qubo(Q)
>>> for sample in response.samples():
... print(sample)
...
{1: 0, 2: 1}
{1: 1, 2: 0}
{1: 1, 2: 0}
{1: 1, 2: 0}
{1: 0, 2: 1}
{1: 0, 2: 1}
{1: 1, 2: 0}
{1: 0, 2: 1}
{1: 1, 2: 0}
>>> # Snipped above response for brevity

Sampler Properties

	TilingComposite.properties

	dict – Properties in the form of a dict.

	TilingComposite.parameters

	dict[str, list] – Parameters in the form of a dict.

Composite Properties

	TilingComposite.children

	list – The single wrapped structured sampler.

	TilingComposite.child

	First child in children.

Structured Sampler Properties

	TilingComposite.nodelist

	list – List of active qubits for the structured solver.

	TilingComposite.edgelist

	list – List of active couplers for the D-Wave solver.

	TilingComposite.adjacency

	dict[variable, set] – Adjacency structure formatted as a dict, where keys are the nodes of the structured sampler and values are sets of all adjacent nodes for each key node.

	TilingComposite.structure

	Structure of the structured sampler formatted as a namedtuple Structure(nodelist, edgelist, adjacency), where the 3-tuple values are the nodelist and edgelist properties and adjacency() method.

Methods

	TilingComposite.sample(bqm, **kwargs)

	Sample from the provided binary quadratic model

	TilingComposite.sample_ising(h, J, **parameters)

	Samples from an Ising model using an implemented sample method.

	TilingComposite.sample_qubo(Q, **parameters)

	Samples from a QUBO using an implemented sample method.

dwave.system.composites.TilingComposite.properties

	
TilingComposite.properties = None

	dict – Properties in the form of a dict.

For an instantiated composed sampler, contains one key 'child_properties' that
has a copy of the child sampler’s properties.

Examples

This example instantiates a TilingComposite sampler using a D-Wave solver
selected by the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file and views the
solver’s properties.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import TilingComposite
>>> sampler_tile = TilingComposite(DWaveSampler(), 1, 1, 4)
>>> sampler_tile.properties
{'child_properties': {u'anneal_offset_ranges': [[-0.2197463755538704,
 0.03821687759418928],
 [-0.2242514597680286, 0.01718456460967399],
 [-0.20860153999435985, 0.05511969218508182],
 [-0.2108920134230625, 0.056392603743884134],
 [-0.21788292874621265, 0.03360435584845211],
 [-0.21700680373359477, 0.005297355417068621],
>>> # Snipped above response for brevity

dwave.system.composites.TilingComposite.parameters

	
TilingComposite.parameters = None

	dict[str, list] – Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters accepted by the
child sampler.

Examples

This example instantiates a TilingComposite sampler using a D-Wave solver
selected by the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file and views the
solver’s parameters.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import TilingComposite
>>> sampler_tile = TilingComposite(DWaveSampler(), 1, 1, 4)
>>> sampler_tile.parameters
{u'anneal_offsets': ['parameters'],
 u'anneal_schedule': ['parameters'],
 u'annealing_time': ['parameters'],
 u'answer_mode': ['parameters'],
 u'auto_scale': ['parameters'],
>>> # Snipped above response for brevity

dwave.system.composites.TilingComposite.children

	
TilingComposite.children = None

	list – The single wrapped structured sampler.

dwave.system.composites.TilingComposite.child

	
TilingComposite.child

	First child in children.

Examples

This example pseudocode defines a composed sampler that uses the first supported
sampler in a composite’s list of samplers on a binary quadratic model.

class MyComposedSampler(Sampler, Composite):

 children = None
 parameters = None
 properties = None

 def __init__(self, child):
 self.children = [child]

 self.parameters = child.parameters.copy() # propagate parameters
 self.parameters['my_additional_parameter'] = []

 self.properties = child.properties.copy() # propagate properties

 # Implementation of the composite's functionality
 def sample(self, bqm, my_additional_parameter, **kwargs):
 # Overwrite the abstract sample method.
 # Additional parameters must have defaults

 # Samples are obtained from the sampler by using the `child` property:
 # response = self.child.sample(bqm, **kwargs)

 raise NotImplementedError

dwave.system.composites.TilingComposite.nodelist

	
TilingComposite.nodelist = None

	list – List of active qubits for the structured solver.

Examples

This example creates a TilingComposite for a problem that requires
a 2x1 Chimera lattice to solve with a DWaveSampler as the sampler.
It prints the active qubits retrieved from a D-Wave solver selected by
the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import TilingComposite
>>> sampler_tile = TilingComposite(DWaveSampler(), 2, 1, 4)
>>> sampler_tile.nodelist
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

dwave.system.composites.TilingComposite.edgelist

	
TilingComposite.edgelist = None

	list – List of active couplers for the D-Wave solver.

Examples

This example creates a TilingComposite for a problem that requires
a 1x2 Chimera lattice to solve with a DWaveSampler as the sampler.
It prints the active couplers retrieved from a D-Wave solver selected by
the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import TilingComposite
>>> sampler_tile = TilingComposite(DWaveSampler(), 1, 2, 4)
>>> sampler_tile.edgelist
[[0, 4],
[0, 5],
[0, 6],
[0, 7],
[1, 4],
[1, 5],
[1, 6],
[1, 7],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[3, 4],
[3, 5],
[3, 6],
[3, 7],
[4, 12],
[5, 13],
[6, 14],
[7, 15],
[8, 12],
[8, 13],
[8, 14],
[8, 15],
[9, 12],
[9, 13],
[9, 14],
[9, 15],
[10, 12],
[10, 13],
[10, 14],
[10, 15],
[11, 12],
[11, 13],
[11, 14],
[11, 15]]

dwave.system.composites.TilingComposite.adjacency

	
TilingComposite.adjacency

	dict[variable, set] – Adjacency structure formatted as a dict, where keys are the
nodes of the structured sampler and values are sets of all adjacent nodes for
each key node.

Examples

This example shows the adjacencies for a placeholder structured sampler that
samples only from the K4 complete graph, where each of the four nodes connects
to all the other nodes.

>>> class K4StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3, 4]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
>>> K4sampler = K4StructuredClass()
>>> K4sampler.adjacency.keys()
[1, 2, 3, 4]

dwave.system.composites.TilingComposite.structure

	
TilingComposite.structure

	Structure of the structured sampler formatted as a namedtuple
Structure(nodelist, edgelist, adjacency), where the 3-tuple values are
the nodelist and edgelist properties
and adjacency() method.

Examples

This example shows the structure of a placeholder structured sampler that
samples only from the K3 complete graph, where each of the three nodes connects
to all the other nodes.

>>> class K3StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (2, 3)]
>>> K3sampler = K3StructuredClass()
>>> K3sampler.structure.edgelist
[(1, 2), (1, 3), (2, 3)]

dwave.system.composites.TilingComposite.sample

	
TilingComposite.sample(bqm, **kwargs)

	Sample from the provided binary quadratic model

	Parameters

	
	bqm (dimod.BinaryQuadraticModel [http://dimod.readthedocs.io/en/latest/reference/binary_quadratic_model.html#dimod.BinaryQuadraticModel]) – Binary quadratic model to be sampled from.

	**kwargs – Optional keyword arguments for the sampling method, specified per solver.

	Returns

	dimod.Response [http://dimod.readthedocs.io/en/latest/reference/response.html#dimod.Response]

Examples

This example uses TilingComposite to instantiate a composed sampler
that submits a simple Ising problem of just two variables that map to qubits 0 and 1
on the D-Wave solver selected by the user’s default D-Wave Cloud Client
configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file. (The simplicity of this example obviates the need for an embedding
composite.) Because the problem fits in a single Chimera [http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera] unit cell, it is tiled
across the solver’s entire Chimera graph, resulting in multiple samples.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import EmbeddingComposite, TilingComposite
>>> sampler = TilingComposite(DWaveSampler(), 1, 1, 4)
>>> response = sampler.sample_ising({0: -1, 1: 1}, {})
>>> for sample in response.samples():
... print(sample)
...
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
{0: 1, 1: -1}
>>> # Snipped above response for brevity

dwave.system.composites.TilingComposite.sample_ising

	
TilingComposite.sample_ising(h, J, **parameters)

	Samples from an Ising model using an implemented sample method.

Examples

This example implements a placeholder QUBO sampler and samples using
the mixin Ising sampler.

>>> import dimod
>>> class ImplementQuboSampler(dimod.Sampler):
... def sample_qubo(self, Q):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementQuboSampler()
>>> h = {1: 0.5, 2: -1, 3: -0.75}
>>> J = {}
>>> response = sampler.sample_ising(h, J)
>>> print(response)
[[-1 1]]

dwave.system.composites.TilingComposite.sample_qubo

	
TilingComposite.sample_qubo(Q, **parameters)

	Samples from a QUBO using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using
the mixin QUBO sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> Q = {(0, 0): -0.5, (0, 1): 1, (1, 1): -0.75}
>>> response = sampler.sample_qubo(Q)
>>> print(response)
[[0 1]]

VirtualGraphComposite

Class

A dimod composite [http://dimod.readthedocs.io/en/latest/reference/samplers.html] that uses the D-Wave virtual graph feature for improved minor-embedding [http://dwave-system.readthedocs.io/en/latest/reference/intro.html#minorEmbedding].

D-Wave virtual graphs simplify the process of minor-embedding by enabling you to more
easily create, optimize, use, and reuse an embedding for a given working graph. When you submit an
embedding and specify a chain strength using these tools, they automatically calibrate the qubits
in a chain to compensate for the effects of biases that may be introduced as a result of strong
couplings.

	
class VirtualGraphComposite(sampler, embedding, chain_strength=None, flux_biases=None, flux_bias_num_reads=1000, flux_bias_max_age=3600)

	Composite to use the D-Wave virtual graph feature for minor-embedding.

Inherits from dimod.ComposedSampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.ComposedSampler] and dimod.Structured [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Structured].

Calibrates qubits in chains to compensate for the effects of biases and enables easy
creation, optimization, use, and reuse of an embedding for a given working graph.

	Parameters

	
	sampler (DWaveSampler) – A dimod dimod.Sampler [http://dimod.readthedocs.io/en/latest/reference/samplers.html#dimod.Sampler]. Typically a DWaveSampler or
derived composite sampler; other samplers may not work or make sense with
this composite layer.

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict][hashable, iterable]) – Mapping from a source graph to the specified sampler’s graph (the target graph).

	chain_strength (float [https://docs.python.org/3/library/functions.html#float], optional, default=None) – Desired chain coupling strength. This is the magnitude of couplings between qubits
in a chain. If None, uses the maximum available as returned by a SAPI query
to the D-Wave solver.

	flux_biases (list/False/None, optional, default=None) – Per-qubit flux bias offsets in the form of a list of lists, where each sublist
is of length 2 and specifies a variable and the flux bias offset associated with
that variable. Qubits in a chain with strong negative J values experience a
J-induced bias; this parameter compensates by recalibrating to remove that bias.
If False, no flux bias is applied or calculated.
If None, flux biases are pulled from the database or calculated empirically.

	flux_bias_num_reads (int [https://docs.python.org/3/library/functions.html#int], optional, default=1000) – Number of samples to collect per flux bias value.

	flux_bias_max_age (int [https://docs.python.org/3/library/functions.html#int], optional, default=3600) – Maximum age (in seconds) allowed for a previously calculated flux bias offset to
be considered valid.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler
that submits a QUBO problem to a D-Wave solver selected by the user’s
default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file. The problem represents a logical
AND gate using penalty function \(P = xy - 2(x+y)z +3z\), where variables x and y
are the gate’s inputs and z the output. This simple three-variable problem is manually
minor-embedded to a single Chimera [http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera] unit cell: variables x and y are represented by
qubits 1 and 5, respectively, and z by a two-qubit chain consisting of qubits 0 and 4.
The chain strength is set to the maximum allowed found from querying the solver’s extended
J range. In this example, the ten returned samples all represent valid states of
the AND gate.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}}
>>> DWaveSampler().properties['extended_j_range']
[-2.0, 1.0]
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding, chain_strength=2)
>>> Q = {('x', 'y'): 1, ('x', 'z'): -2, ('y', 'z'): -2, ('z', 'z'): 3}
>>> response = sampler.sample_qubo(Q, num_reads=10)
>>> for sample in response.samples():
... print(sample)
...
{'y': 0, 'x': 1, 'z': 0}
{'y': 1, 'x': 0, 'z': 0}
{'y': 1, 'x': 0, 'z': 0}
{'y': 1, 'x': 1, 'z': 1}
{'y': 0, 'x': 1, 'z': 0}
{'y': 1, 'x': 0, 'z': 0}
{'y': 0, 'x': 1, 'z': 0}
{'y': 0, 'x': 1, 'z': 0}
{'y': 0, 'x': 0, 'z': 0}
{'y': 1, 'x': 0, 'z': 0}

Sampler Properties

	VirtualGraphComposite.properties

	dict – Properties in the form of a dict.

	VirtualGraphComposite.parameters

	dict[str, list] – Parameters in the form of a dict.

Composite Properties

	VirtualGraphComposite.children

	list – List containing the FixedEmbeddingComposite-wrapped sampler.

	VirtualGraphComposite.child

	First child in children.

Structured Sampler Properties

	VirtualGraphComposite.nodelist

	list – Nodes available to the composed sampler.

	VirtualGraphComposite.edgelist

	list – Edges available to the composed sampler.

	VirtualGraphComposite.adjacency

	dict[variable, set] – Adjacency structure for the composed sampler.

	VirtualGraphComposite.structure

	Structure of the structured sampler formatted as a namedtuple Structure(nodelist, edgelist, adjacency), where the 3-tuple values are the nodelist and edgelist properties and adjacency() method.

Methods

	VirtualGraphComposite.sample(bqm, **kwargs)

	Sample from the given Ising model.

	VirtualGraphComposite.sample_ising(h, J, …)

	Samples from an Ising model using an implemented sample method.

	VirtualGraphComposite.sample_qubo(Q, …)

	Samples from a QUBO using an implemented sample method.

dwave.system.composites.VirtualGraphComposite.properties

	
VirtualGraphComposite.properties = None

	dict – Properties in the form of a dict.

For an instantiated composed sampler, contains one key 'child_properties' that
has a copy of the child sampler’s properties.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler
that uses a D-Wave solver selected by the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file
and views the composed sampler’s properties.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.properties
{'child_properties': {u'anneal_offset_ranges': [[-0.2197463755538704,
 0.03821687759418928],
 [-0.2242514597680286, 0.01718456460967399],
 [-0.20860153999435985, 0.05511969218508182],
 [-0.2108920134230625, 0.056392603743884134],
>>> # Snipped above response for brevity

dwave.system.composites.VirtualGraphComposite.parameters

	
VirtualGraphComposite.parameters = None

	dict[str, list] – Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters accepted by the child
sampler with an additional parameter, ‘apply_flux_bias_offsets’.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler
that uses a D-Wave solver selected by the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file
and views the composed sampler’s parameters.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.parameters
{u'anneal_offsets': ['parameters'],
 u'anneal_schedule': ['parameters'],
 u'annealing_time': ['parameters'],
 u'answer_mode': ['parameters'],
 'apply_flux_bias_offsets': [],
 u'auto_scale': ['parameters'],
>>> # Snipped above response for brevity

dwave.system.composites.VirtualGraphComposite.children

	
VirtualGraphComposite.children = None

	list – List containing the FixedEmbeddingComposite-wrapped sampler.

dwave.system.composites.VirtualGraphComposite.child

	
VirtualGraphComposite.child

	First child in children.

Examples

This example pseudocode defines a composed sampler that uses the first supported
sampler in a composite’s list of samplers on a binary quadratic model.

class MyComposedSampler(Sampler, Composite):

 children = None
 parameters = None
 properties = None

 def __init__(self, child):
 self.children = [child]

 self.parameters = child.parameters.copy() # propagate parameters
 self.parameters['my_additional_parameter'] = []

 self.properties = child.properties.copy() # propagate properties

 # Implementation of the composite's functionality
 def sample(self, bqm, my_additional_parameter, **kwargs):
 # Overwrite the abstract sample method.
 # Additional parameters must have defaults

 # Samples are obtained from the sampler by using the `child` property:
 # response = self.child.sample(bqm, **kwargs)

 raise NotImplementedError

dwave.system.composites.VirtualGraphComposite.nodelist

	
VirtualGraphComposite.nodelist = None

	list – Nodes available to the composed sampler.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler
that uses a D-Wave solver selected by the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.
Because qubits 0, 1, 4, 5 are active on the selected D-Wave solver, the three nodes, x, y, and z,
specified by the embedding, are all available to problems using this composed sampler.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.nodelist
['x', 'y', 'z']

dwave.system.composites.VirtualGraphComposite.edgelist

	
VirtualGraphComposite.edgelist = None

	list – Edges available to the composed sampler.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler
that uses a D-Wave solver selected by the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.
Because qubits 0, 5, and coupled qubits {0, 4} are all coupled on the selected D-Wave solver, edges
between three nodes, x, y, and z, as specified by the embedding, are available to problems using this
composed sampler. However, qubit 8 is in an adjacent unit cell on the D-Wave solver and not directly
connected to the other four qubits, so node a does not share an edge with any other nodes.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}, 'a': {8}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.edgelist
[('x', 'y'), ('x', 'z'), ('y', 'z')]

dwave.system.composites.VirtualGraphComposite.adjacency

	
VirtualGraphComposite.adjacency = None

	dict[variable, set] – Adjacency structure for the composed sampler.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler
that uses a D-Wave solver selected by the user’s default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file.
Because qubits 0, 5, and coupled qubits {0, 4} are all coupled on the selected D-Wave solver, edges
between three nodes, x, y, and z, as specified by the embedding, are available to problems using this
composed sampler. However, qubit 8 is in an adjacent unit cell on the D-Wave solver and not directly
connected to the other four qubits, so node a does not share an edge with any other nodes.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}, 'a': {8}}
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding)
>>> sampler.adjacency
{'a': set(), 'x': {'y', 'z'}, 'y': {'x', 'z'}, 'z': {'x', 'y'}}

dwave.system.composites.VirtualGraphComposite.structure

	
VirtualGraphComposite.structure

	Structure of the structured sampler formatted as a namedtuple
Structure(nodelist, edgelist, adjacency), where the 3-tuple values are
the nodelist and edgelist properties
and adjacency() method.

Examples

This example shows the structure of a placeholder structured sampler that
samples only from the K3 complete graph, where each of the three nodes connects
to all the other nodes.

>>> class K3StructuredClass(dimod.Structured):
... @property
... def nodelist(self):
... return [1, 2, 3]
...
... @property
... def edgelist(self):
... return [(1, 2), (1, 3), (2, 3)]
>>> K3sampler = K3StructuredClass()
>>> K3sampler.structure.edgelist
[(1, 2), (1, 3), (2, 3)]

dwave.system.composites.VirtualGraphComposite.sample

	
VirtualGraphComposite.sample(bqm, **kwargs)

	Sample from the given Ising model.

	Parameters

	
	h (list/dict) – Linear biases of the Ising model. If a list, the list’s indices
are used as variable labels.

	J (dict of (int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]) – float):
Quadratic biases of the Ising model.

	apply_flux_bias_offsets (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, use the calculated flux_bias offsets (if available).

	**kwargs – Optional keyword arguments for the sampling method, specified per solver.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler
that submits an Ising problem to a D-Wave solver selected by the user’s
default D-Wave Cloud Client configuration [http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config] file. The problem represents a logical
NOT gate using penalty function \(P = xy\), where variable x is the gate’s input
and y the output. This simple two-variable problem is manually
minor-embedded to a single Chimera [http://dwave-system.readthedocs.io/en/latest/reference/intro.html#chimera] unit cell: each variable is represented by a
chain of half the cell’s qubits, x as qubits 0, 1, 4, 5, and y as qubits 2, 3, 6, 7.
The chain strength is set to half the maximum allowed found from querying the solver’s extended
J range. In this example, the ten returned samples all represent valid states of
the NOT gate.

>>> from dwave.system.samplers import DWaveSampler
>>> from dwave.system.composites import VirtualGraphComposite
>>> embedding = {'x': {0, 4, 1, 5}, 'y': {2, 6, 3, 7}}
>>> DWaveSampler().properties['extended_j_range']
[-2.0, 1.0]
>>> sampler = VirtualGraphComposite(DWaveSampler(), embedding, chain_strength=1)
>>> h = {}
>>> J = {('x', 'y'): 1}
>>> response = sampler.sample_ising(h, J, num_reads=10)
>>> for sample in response.samples():
... print(sample)
...
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': 1, 'x': -1}
{'y': -1, 'x': 1}
{'y': 1, 'x': -1}

dwave.system.composites.VirtualGraphComposite.sample_ising

	
VirtualGraphComposite.sample_ising(h, J, **parameters)

	Samples from an Ising model using an implemented sample method.

Examples

This example implements a placeholder QUBO sampler and samples using
the mixin Ising sampler.

>>> import dimod
>>> class ImplementQuboSampler(dimod.Sampler):
... def sample_qubo(self, Q):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementQuboSampler()
>>> h = {1: 0.5, 2: -1, 3: -0.75}
>>> J = {}
>>> response = sampler.sample_ising(h, J)
>>> print(response)
[[-1 1]]

dwave.system.composites.VirtualGraphComposite.sample_qubo

	
VirtualGraphComposite.sample_qubo(Q, **parameters)

	Samples from a QUBO using an implemented sample method.

Examples

This example implements a placeholder Ising sampler and samples using
the mixin QUBO sampler.

>>> import dimod
>>> class ImplementIsingSampler(dimod.Sampler):
... def sample_ising(self, h, J):
... return dimod.Response.from_dicts([{1: -1, 2: +1}], {'energy': [-1.0]}) # Placeholder
... @property
... def properties(self):
... return self._properties
... @property
... def parameters(self):
... return dict()
...
>>> sampler = ImplementIsingSampler()
>>> Q = {(0, 0): -0.5, (0, 1): 1, (1, 1): -0.75}
>>> response = sampler.sample_qubo(Q)
>>> print(response)
[[0 1]]

Installation

Installation from PyPI:

pip install dwave-system

Installation from PyPI with drivers:

Note

Prior to v0.3.0, running pip install dwave-system installed a driver dependency called dwave-system-tuning. This dependency has a restricted license and has been made optional as of v0.3.0,
but is highly recommanded. To view the license details:

from dwave.system.tuning import __license__
print(__license__)

To install with optional dependencies:

pip install dwave-system[drivers] --extra-index-url https://pypi.dwavesys.com/simple

Installation from source:

pip install -r requirements.txt
python setup.py

Note that installing from source installs dwave-system-tuning. To uninstall the proprietary components:

pip uninstall dwave-system-tuning

License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

	You must give any other recipients of the Work or
Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices
stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

	If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets “[]”
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

D-Wave

D-Wave Systems [https://www.dwavesys.com] is the leader in the development and delivery of quantum computing systems
and software, and the world’s only commercial supplier of quantum computers.

Learn more about D-Wave at D-Wave Systems [https://www.dwavesys.com].

Ocean Overview

D-Wave Ocean [http://dw-docs.readthedocs.io/en/latest/index.html] includes
various projects/repositories on GitHub that help solve problems on the D-Wave
system.

Learn about D-Wave’s Ocean and how its projects work together at D-Wave Ocean on Read the Docs [http://dw-docs.readthedocs.io/en/latest/index.html].

Contributing to Ocean

D-Wave welcomes contributions to Ocean projects.

See how to contribute at Ocean Contributors [http://dw-docs.readthedocs.io/en/latest/CONTRIBUTING.html].

Glossary

The field of quantum computing has many domain-specific terms.

Learn the relevant terminology at Ocean Glossary [http://dw-docs.readthedocs.io/en/latest/glossary.html].

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dwave	

 	
 	
 dwave.system.composites.embedding	

 	
 	
 dwave.system.composites.tiling	

 	
 	
 dwave.system.composites.virtual_graph	

 	
 	
 dwave.system.samplers.dwave_sampler	

Index

 A
 | C
 | D
 | E
 | F
 | N
 | P
 | S
 | T
 | V

A

 	
 	adjacency (DWaveSampler attribute)

 	(FixedEmbeddingComposite attribute)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

C

 	
 	child (EmbeddingComposite attribute)

 	(FixedEmbeddingComposite attribute)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

 	
 	children (EmbeddingComposite attribute)

 	(FixedEmbeddingComposite attribute)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

D

 	
 	dwave.system.composites.embedding (module)

 	dwave.system.composites.tiling (module)

 	
 	dwave.system.composites.virtual_graph (module)

 	dwave.system.samplers.dwave_sampler (module)

 	DWaveSampler (class in dwave.system.samplers)

E

 	
 	edgelist (DWaveSampler attribute)

 	(FixedEmbeddingComposite attribute)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

 	
 	EmbeddingComposite (class in dwave.system.composites)

F

 	
 	FixedEmbeddingComposite (class in dwave.system.composites)

N

 	
 	nodelist (DWaveSampler attribute)

 	(FixedEmbeddingComposite attribute)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

P

 	
 	parameters (DWaveSampler attribute)

 	(EmbeddingComposite attribute)

 	(FixedEmbeddingComposite attribute)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

 	
 	properties (DWaveSampler attribute)

 	(EmbeddingComposite attribute)

 	(FixedEmbeddingComposite attribute)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

S

 	
 	sample() (DWaveSampler method)

 	(EmbeddingComposite method)

 	(FixedEmbeddingComposite method)

 	(TilingComposite method)

 	(VirtualGraphComposite method)

 	sample_ising() (DWaveSampler method)

 	(EmbeddingComposite method)

 	(FixedEmbeddingComposite method)

 	(TilingComposite method)

 	(VirtualGraphComposite method)

 	
 	sample_qubo() (DWaveSampler method)

 	(EmbeddingComposite method)

 	(FixedEmbeddingComposite method)

 	(TilingComposite method)

 	(VirtualGraphComposite method)

 	structure (DWaveSampler attribute)

 	(FixedEmbeddingComposite attribute)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

T

 	
 	TilingComposite (class in dwave.system.composites)

V

 	
 	VirtualGraphComposite (class in dwave.system.composites)

 _static/ajax-loader.gif

_images/chimera.png
g
%3
K2

ORI

“‘

X
%

_static/ChimeraUnitCell.png
Column Cross

_static/comment-close.png

_static/comment.png

_static/chimera.png
g
%3
K2

ORI

“‘

X
%

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/ChimeraUnitCell.png
Column Cross

nav.xhtml

 Table of Contents

 		
 dwave-system

 		
 Reference Documentation

 		
 Introduction

 		
 Samplers

 		
 Composites

 		
 D-Wave System Architecture: Chimera

 		
 Minor-Embedding

 		
 Samplers

 		
 D-Wave Sampler

 		
 Composites

 		
 EmbeddingComposite

 		
 FixedEmbeddingComposite

 		
 TilingComposite

 		
 VirtualGraphComposite

 		
 Installation

 		
 License

 		
 D-Wave

 		
 Ocean Overview

 		
 Contributing to Ocean

 		
 Glossary

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

